Hexagonal core-shell structure nanowire with high spins of spin-3/2 and spin-5/2

Authors

  • M. Karimou Ecole Nationale Supérieure de Génie Energétique et Procédés d’Abomey, Benin; Institute of Mathematic and Physical Sciences (IMSP), Dangbo, Benin https://orcid.org/0000-0002-1422-6479
  • R. A. Yessoufou Institute of Mathematic and Physical Sciences (IMSP), Dangbo, Benin; Department of Physics, Erciyes University, 38039, Kayseri, Turkey
  • E. Albayrak Department of Physics, University of Abomey-Calavi, Benin

DOI:

https://doi.org/10.5488/cmp.27.23704

Keywords:

mean field theory, Blume-Capel model, hysteresis loops, compensation temperature, magnetization, mixed-spin system

Abstract

The magnetic properties and hysteresis loops for the hexagonal Ising nanowire (HIN) with a core-shell structure consisting of mixed spins with the core spin being spin-5/2 and the shell spins being spin-3/2 are studied. The Blume-Capel model is considered by using the mean-field approximation (MFA) based on the Gibbs-Bogoliubov inequality for free energy. The impact of different bilinear interaction parameters (Jcc, Jss, Jcs) between the core, shell, and core and shell spins, respectively, including the crystal (Dc, Ds) and external magnetic fields (h = hc = hs) at the core and shell sites, are taken into consideration. In order to obtain phase diagrams on various planes, the thermal changes of the net, core, and shell magnetizations are investigated for various values of our system parameters. It is discovered that the model exhibits only second-order phase transitions when h = 0.0 for D greater or equal to zero, first- and second-order phase transitions for h ≠ 0.0 and compensation temperatures for all h.

References

Zhang Q., Wei G., Gu Y., Phys. Status Solidi B, 2005, 242, 924. DOI: https://doi.org/10.1002/pssb.200402123

Albayrak E., Yigit A., Phys. Lett. A, 2006, 353, 121. DOI: https://doi.org/10.3917/cis.121.0353

Yessoufou R. A., Amoussa S. H., Hontinfinde F., Cent. Eur. J. Phys., 2009, 7, 555. DOI: https://doi.org/10.2478/s11534-009-0016-x

Wei G., Hai-Ling M., Commun. Theor. Phys., 2009, 51, 756. DOI: https://doi.org/10.1088/0253-6102/51/3/16

Deviren B., Keskin M., J. Stat. Phys., 2010, 140, 934. DOI: https://doi.org/10.1007/s10955-010-0025-6

Ma B., Jiang W., IEEE Trans. Magn., 2011, 47, 3118. DOI: https://doi.org/10.1109/TMAG.2011.2149506

Mohamad H. K., J. Magn. Magn. Mater., 2011, 323, 61.

De La Espriella Velez N., Ortega Lopez C., Torres Hoyos F., Rev. Mex. Fis., 2013, 59, 95.

Reyes J. A., De La Espriella N., Buendìa G. M., Phys. Status Solidi B, 2015, 252, 2268. DOI: https://doi.org/10.1002/pssb.201552110

Alzate-Cardona J. D., Sabogal-Suárez D., Restrepo-Parra E., J. Magn. Magn. Mater., 2017, 429, 34. DOI: https://doi.org/10.1016/j.jmmm.2017.01.004

De La Espriella N., Madera J. C., Buendìa G. M., J. Magn. Magn. Mater., 2017, 442, 350 DOI: https://doi.org/10.1016/j.jmmm.2017.07.015

Keskin M., Ertaş M., Physica A, 2018, 496, 79. DOI: https://doi.org/10.1016/j.physa.2017.12.034

Ivanov Y. P., Alfadhel A., Alnassar M., Perez J. E., Vazquez M., Chuvilin A., Kosel J., Sci. Rep., 2016, 6, 24189. DOI: https://doi.org/10.1038/srep24189

Benhouria Y., Essaoudi I., Ainane A., Ahuja R., Dujardin F., Ferroelectrics, 2017, 507, 58. DOI: https://doi.org/10.1080/00150193.2017.1283170

Alzate-Cardona J. D., Barrero-Moreno M. C., Restrepo-Parra E., J. Phys.: Condens. Matter, 2017, 29, 445801. DOI: https://doi.org/10.1088/1361-648X/aa8a06

Aharrouch R., El Kihel K., Madani M., Hachem N., Lafhal A., El Bouziani M., Multidiscip. Model. Mater. Struct., 2020, 16, 1261. DOI: https://doi.org/10.1108/MMMS-11-2019-0194

Gao Z. Y., Wang W., Sun L., Yang L. M., Ma B. Y., Li P. S., J. Magn. Magn. Mater., 2022, 548, 168967. DOI: https://doi.org/10.1016/j.jmmm.2021.168967

Nmaila B., Kadiri A., Arbaoui A., Drissi L. B., Ahl Laamara R., Htoutou K., Chin. J. Phys., 2022, 79, 362–373. DOI: https://doi.org/10.1016/j.cjph.2022.07.019

Nmaila B., Htoutou K., Ahllaamara R., Drissi L. B., Indian J. Phys., 2023, 97, 429. DOI: https://doi.org/10.1007/s12648-022-02393-1

Karimou M., Oke T. D., Hontinfinde S. I. V., Kple J., Hontinfinde F., Physica B, 2023, 666, 415107. DOI: https://doi.org/10.1016/j.physb.2023.415107

Mendes R. G. B., Santos J. P., Sá Barreto F. C., Braz. J. Phys., 2021, 51, 1929. DOI: https://doi.org/10.1007/s13538-021-00982-9

Mendes R. G. B., Sá Barreto F. C., Santos J. P., Physica A, 2018, 505, 1186. DOI: https://doi.org/10.1016/j.physa.2018.03.094

Mendes R. G. B., Sá Barreto F. C., Santos J. P., Braz. J. Phys., 2018, 48, 137. DOI: https://doi.org/10.1007/s13538-018-0560-1

Bogoliubov N. N., J. Phys. (USSR), 1947, 11, 23.

Published

2024-06-28

Issue

Section

Articles

Categories

How to Cite

[1]
M. Karimou, R. A. Yessoufou, and E. Albayrak, “Hexagonal core-shell structure nanowire with high spins of spin-3/2 and spin-5/2”, Condens. Matter Phys., vol. 27, no. 2, p. 23704, Jun. 2024, doi: 10.5488/cmp.27.23704.

Similar Articles

11-20 of 34

You may also start an advanced similarity search for this article.