Revisiting the wetting behavior of solid surfaces by water-like models within a density functional theory

Authors

DOI:

https://doi.org/10.5488/cmp.27.13604

Keywords:

water, graphite, density functional, wetting, adsorption

Abstract

We perform the analysis of predictions of a classical density functional theory for associating fluids with different association strength concerned with wetting of solid surfaces. The four associating sites water-like models with non-associative square-well attraction parametrized by Clark et al. [Mol. Phys., 2006, 104, 3561] are considered. The fluid-solid potential is assumed to have a 10-4-3 functional form. The growth of water film on the substrate upon changing the chemical potential is described. The wetting and prewetting critical temperatures, as well as the prewetting phase diagram are evaluated for different fluid-solid attraction strength from the analysis of the adsorption isotherms. Moreover, the temperature dependence of the contact angle is obtained from the Young equation. It yields estimates for the wetting temperature as well. Theoretical findings are compared with experimental results and in a few cases with data from computer simulations. The theory is successful and quite accurate in describing the wetting temperature and contact angle changes with temperature for different values of fluid-substrate attraction. Moreover, the method provides an easy tool to study other associating fluids on solids of importance for chemical engineering, in comparison with laboratory experiments and computer simulations.

References

Ilnytskyi J., Wilson M. R., Comput. Phys. Commun., 2002, 134, 23–32, https://doi.org/10.1016/S0010-4655(00)00187-9. DOI: https://doi.org/10.1016/S0010-4655(00)00187-9

Ilnytskyi J., Toshchevikov V., Saphiannikova M., Soft Matter, 2019, 15, 9894–9908, https://doi.org/10.1039/C9SM01853K. DOI: https://doi.org/10.1039/C9SM01853K

Ilnytskyi J. M., Wilson M. R., J. Mol. Liq., 2001, 92, 21–28, https://doi.org/10.1016/S0167-7322(01)00174-X. DOI: https://doi.org/10.1016/S0167-7322(01)00174-X

Sokolowski S., Ilnytskyi J., Pizio O., Condens. Matter Phys., 2014, 17, 12601, https://doi.org/10.5488/CMP.17.12601. DOI: https://doi.org/10.5488/CMP.17.12601

Ilnytskyi J., Patsahan T., Pizio O., J. Mol. Liq., 2016, 223, 707–715, https://doi.org/10.1016/j.molliq.2016.08.098. DOI: https://doi.org/10.1016/j.molliq.2016.08.098

Ilnytskyi J., Sokolowski S., Pizio O., Phys. Rev. E, 1999, 5, 4161–4168, https://doi.org/10.1103/PhysRevE.59.4161. DOI: https://doi.org/10.1103/PhysRevE.59.4161

Ilnytsky J., Patrykiejew A., Sokolowski S., Pizio O., J. Phys. Chem. B, 1999, 103, 868–871, https://doi.org/10.1021/jp983302. DOI: https://doi.org/10.1021/jp983302k

De Gennes P.-G., Brochard-Wyart F., Quéré D., Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer, New York, 2004, https://doi.org/10.1007/978-0-387-21656-0. DOI: https://doi.org/10.1007/978-0-387-21656-0

Ruckenstein E., Berim G.,Wetting: Theory and Experiments, Two-Volume Set, CRC Press, 1st Ed., Boca Raton, 2018, https://doi.org/10.1201/9780429487972. DOI: https://doi.org/10.1201/9780429401824-1

Starov V. M., Velarde M. G., Wetting and Spreading Dynamics, CRC Press, 2nd Ed., Boca Raton, 2019, https://doi.org/10.1201/9780429506246. DOI: https://doi.org/10.1201/9780429506246

Bonn D., Eggers J., Indekeu J., Meunier J., Rolley E., Rev. Mod. Phys., 2009 81, 739–805, https://doi.org/10.1103/RevModPhys.81.739. DOI: https://doi.org/10.1103/RevModPhys.81.739

Anantharaju N., Panchagnula M. V., Vedantam S., Length Scale Effects inWetting of Chemically Heterogeneous Surfaces, in: Contact Angle, Wettability and Adhesion, Vol. 6, 53–64, Ed. K. L. Mittal, Koninklijke Brill NV, Leiden, 2009, https://doi.org/10.1201/b12247. Anantharaju N., Panchagnula M. V., Vedantam S., In: Contact Angle,Wettability and Adhesion, Vol. 6, Mittal K. L. (Ed.), Koninklijke Brill NV, Leiden, 2009, 53–64, https://doi.org/10.1201/b1224. DOI: https://doi.org/10.1163/ej.9789004169326.i-400.25

Dietrich S., Popescu M. N., Rauscher M., J. Phys.: Condens. Matter, 2005, 17, S577–S593, https://doi.org/10.1088/0953-8984/8/47/004. DOI: https://doi.org/10.1088/0953-8984/17/9/017

Yatsyshin P., Kalliadasis S., J. Fluid Mech., 2021, 913, A45, https://doi.org/10.1017/jfm.2020.1167. DOI: https://doi.org/10.1017/jfm.2020.1167

Mistura G., Pierno M., Adv. Phys.: X, 2017, 2, 591–607, https://doi.org/10.1080/23746149.2017.1336940. DOI: https://doi.org/10.1080/23746149.2017.1336940

Li H., Li A., Zhao Z., Li M., Song Y., Small, 2020, 1, 2000028, https://doi.org/10.1002/sstr.202000028. DOI: https://doi.org/10.1002/sstr.202000028

Wang J., Xiao L., Liao G., Zhang Y., Guo L., Arns C. H., Sun Z., Sci. Rep., 2018, 8, 1–14, https://doi.org/10.1038/s41598-018-31803-w. DOI: https://doi.org/10.1038/s41598-018-31803-w

Pizio O., Sokolowski S., Mol. Phys, 2022, 120, e2011454, https://doi.org/10.1080/00268976.2021.2011454. DOI: https://doi.org/10.1080/00268976.2021.2011454

Pizio O., Sokołowski S., In: Encyclopedia of Solid-Liquid Interfaces, Elsevier, 2024, 114–125, https://doi.org/10.1016/B978-0-323-85669-0.00067-2. DOI: https://doi.org/10.1016/B978-0-323-85669-0.00067-2

Pusztai L., Pizio O., Sokolowski S., J. Chem. Phys., 2008, 129, 184103, https://doi.org/10.1063/1.2976578. DOI: https://doi.org/10.1063/1.2976578

Müller E. A., Gubbins K. E., Ind. Eng. Chem. Res., 2001, 40, 2193, https://doi.org/10.1021/ie000773w. DOI: https://doi.org/10.1021/ie000773w

Clark G. N., Haslam A. J., Galindo A., Jackson G., Mol. Phys., 2006, 104 3561–3581, https://doi.org/10.1080/00268970601081475. DOI: https://doi.org/10.1080/00268970601081475

Zhao H., Ding Y., McCabe C., J. Chem. Phys., 2007, 127, 084514, https://doi.org/10.1063/1.2756038. DOI: https://doi.org/10.1063/1.2756038

Patrykiejew A., Sokolowski S., Pizio O., In: Surface and interface science: Solid-gas interfaces II, Vol. 6, Wandelt K. (Ed.), chap. 46, John Wiley & Sons, Ltd, 2016, 883–1253, https://doi.org/10.1002/9783527680580.ch46. DOI: https://doi.org/10.1002/9783527680580.ch46

Yu Y.-X., Wu J., J. Chem. Phys., 2002, 116, 7094–7103, https://doi.org/10.1063/1.1463435. DOI: https://doi.org/10.1063/1.1463435

Haghmoradi A., Wang L., Chapman W. G., J. Phys.: Condens. Matter, 2017, 29, 044002, https://doi.org/10.1088/1361-648x/29/4/044002. DOI: https://doi.org/10.1088/1361-648X/29/4/044002

Bryk P., Sokolowski S., Pizio O., J. Chem. Phys., 2006, 125, 024909, https://doi.org/10.1063/1.2212944. DOI: https://doi.org/10.1063/1.2212944

Millan Malo B., Huerta A., Pizio O., Sokolowski S., J. Phys. Chem. B, 2000, 104, 7756–7763,https://doi.org/10.1021/jp000731l. DOI: https://doi.org/10.1021/jp000731l

Dufal S., Lafitte T., Haslam A. J., Galindo A., Clark G. N. I., Vega C., Jackson G., Mol. Phys., 2015, 113, 948–984, https://doi.org/10.1080/00268976.2015.1029027. DOI: https://doi.org/10.1080/00268976.2015.1029027

Pandit R., Schick M., Wortis M., Phys. Rev. B, 1982, 26, 5112–5140, https://doi.org/10.1103/PhysRevB.26.5112. DOI: https://doi.org/10.1103/PhysRevB.26.5112

Hughes A. P., Archer A. J., Thiele U., Amer. J. Phys., 2014, 82, 1119–1129, https://doi.org/10.1119/1.4890823. DOI: https://doi.org/10.1119/1.4890823

Jackson G., Chapman W. G., Gubbins K. E., Mol. Phys., 1988, 65, 1–31, https://doi.org/10.1080/00268978800100821. DOI: https://doi.org/10.1080/00268978800100821

Barker J., Henderson D., J. Chem. Phys., 1967, 47, 4714–4721, https://doi.org/10.1063/1.1701689. DOI: https://doi.org/10.1063/1.1701689

Steele W. A., The Interaction of Gases with Solid Surfaces, Pergamon Press, Oxford, 1974.

Wertheim M. S., J. Stat. Phys., 1984, 35, 19–34, https://doi.org/10.1007/BF01017362. DOI: https://doi.org/10.1007/BF01017362

Wertheim M. S., J. Stat. Phys., 1984, 35, 35–47, https://doi.org/10.1007/BF01017363. DOI: https://doi.org/10.1007/BF01017363

Chapman W. G., Jackson G., Gubbins K. E., Mol. Phys., 1988, 65, 1057–1079, https://doi.org/10.1080/00268978800101601. DOI: https://doi.org/10.1080/00268978800101601

Gil-Villegas A., Galindo A., Whitehead P. J., Mills S. J., Jackson G., Burgess A. N., J. Chem. Phys., 1997, 106, 4168–4186, https://doi.org/10.1063/1.473101. DOI: https://doi.org/10.1063/1.473101

TrejosV. M., Pizio O., Sokolowski S., Fluid Phase Equilib., 2018, 473, 145–153, https://doi.org/10.1016/j.fluid.2018.06.005. DOI: https://doi.org/10.1016/j.fluid.2018.06.005

Pizio O., Sokolowski S., J. Mol. Liq., 2022, 357, 119111, https://doi.org/10.1016/j.molliq.2022.119111. DOI: https://doi.org/10.1016/j.molliq.2022.119111

Pizio O., Sokolowski S., J. Mol. Liq., 2023, 390, 123009, https://doi.org/10.1016/j.molliq.2023.123009. DOI: https://doi.org/10.1016/j.molliq.2023.123009

Yu Y-X., Wu J., J. Chem. Phys., 2002, 117, 10156–10164, https://doi.org/10.1063/1.1520530. DOI: https://doi.org/10.1063/1.1520530

Trejos V. M., Pizio O., Sokolowski S., J. Chem. Phys., 2018, 149, 134701, https://doi.org/10.1063/1.5066552. DOI: https://doi.org/10.1063/1.5066552

Pizio O., Trejos V. M., Sokolowski S., Mol. Phys., 2020, 118, 1615647, https://doi.org/10.1080/00268976.2019.1615647. DOI: https://doi.org/10.1080/00268976.2019.1615647

Bryk P., Bucior K., Sokolowski S., Żukociński G., J. Phys.: Condens. Matter, 2004, 16, 8861–8873, https://doi.org/10.1088/0953-8984/16/49/005. DOI: https://doi.org/10.1088/0953-8984/16/49/005

Dietrich S., In: Phase Transition and Critical Phenomena, Vol. 12, Domb C., Lebowitz J. L. (Eds.), Academic Press, London, 1988, 2–218.

Fox H. W., Zisman W. A., J. Colloid Sci., 1950, 5, 514–531, https://doi.org/10.1016/0095-8522(50)90044-4. DOI: https://doi.org/10.1016/0095-8522(50)90044-4

Jasper W. J., Anand N., J. Mol. Liq., 2019, 281, 196–203, https://doi.org/10.1016/j.molliq.2019.02.039. DOI: https://doi.org/10.1016/j.molliq.2019.02.039

Rapaport D. C., The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge, 2004, https://doi.org/10.1017/CBO9780511816581. DOI: https://doi.org/10.1017/CBO9780511816581

Heyes D. M., CMST, 2015, 21, 169–179, https://doi.org/10.12921/cmst.2015.21.04.001. DOI: https://doi.org/10.12921/cmst.2015.21.04.001

Pizio O., Sokolowski S., Trejos V. M., Condens. Matter Phys., 2021, 24, 33601, https://doi.org/10.5488/CMP.24.33601. DOI: https://doi.org/10.5488/CMP.24.33601

Pi H., Aragones J. L., Vega C., Noya E. G., Abascal J. L. F., Gonzalez M. A., McBride C., Mol. Phys., 2009, 107, 365–374, https://doi.org/10.1080/00268970902784926. DOI: https://doi.org/10.1080/00268970902784926

Fletcher D. A., McMeeking R. F., Parkin D., J. Chem. Inf. Comput. Sci., 1966, 36, 746, https://doi.org/10.1021/ci960015+. DOI: https://doi.org/10.1021/ci960015+

Vargaftik N. B., Volkov B. N., Voljak L. D., J. Phys. Chem. Ref. Data, 1983, 12, 817–820, https://doi.org/10.1063/1.555688. DOI: https://doi.org/10.1063/1.555688

Gloor G. J., Jackson G., Blas F. J., Martin del Rio E., de Miguel E., J. Chem. Phys., 2004, 121, 12740, https://doi.org/10.1063/1.1807833. DOI: https://doi.org/10.1063/1.1807833

Friedman S. R., Khalil M., Taborek P., Phys. Rev. Lett., 2013, 111, 226101, https://doi.org/10.1103/PhysRevLett.111.226101. DOI: https://doi.org/10.1103/PhysRevLett.111.226101

Cheng E., Cole M. W., Saam W. F., Treiner J., Phys. Rev. Lett., 1991, 67, 1007–1011, https://doi.org/10.1103/PhysRevLett.67.1007. DOI: https://doi.org/10.1103/PhysRevLett.67.1007

Notman R., Walsh T. R., Langmuir, 2009, 25, 1638–1644, https://doi.org/10.1021/la803324x. DOI: https://doi.org/10.1021/la803324x

De Leeuw N. H., Higgins F. M., Parker S. C., J. Phys. Chem. B, 1999, 103, 1270–1277. https://doi.org/10.1021/jp983239z. DOI: https://doi.org/10.1021/jp983239z

Gaigeot M.-P., Sprik M., Sulpizi M., J. Phys.: Condens. Matter, 2012, 24, 124106, https://doi.org/10.1088/0953-8984/24/12/124106. DOI: https://doi.org/10.1088/0953-8984/24/12/124106

Zhao X., Phys. Rev. B, 2007, 76, 041402(R), https://doi.org/10.1103/PhysRevB.76.041402. DOI: https://doi.org/10.1103/PhysRevB.76.041402

Sokolowski S., Fischer J., J. Chem. Phys., 1992, 96, 5441–5447, https://doi.org/10.1063/1.462727. DOI: https://doi.org/10.1063/1.462727

Sokolowski S., Kalyuzhnyi Y. V., J. Phys. Chem. B, 2014, 118, 9076–9084, https://doi.org/10.1021/jp503826p. DOI: https://doi.org/10.1021/jp503826p

Published

2024-03-28

How to Cite

[1]
A. Kozina, M. Aguilar, O. Pizio, and S. Sokołowski, “Revisiting the wetting behavior of solid surfaces by water-like models within a density functional theory”, Condens. Matter Phys., vol. 27, no. 1, p. 13604, Mar. 2024, doi: 10.5488/cmp.27.13604.

Similar Articles

You may also start an advanced similarity search for this article.