Self-assembly behaviour of diblock copolymer-diblock copolymer under oscillating shear field

Authors

  • Y. Guo Department of Chemical Engineering and Materials Engineering, Lyuliang University, Lishi, 033001, China https://orcid.org/0000-0003-1576-5148
  • H. He School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
  • X. Fu School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China

DOI:

https://doi.org/10.5488/cmp.27.23801

Keywords:

diblock copolymer, oscillating shear field, self-assembly

Abstract

The self-assembly behaviour of a diblock copolymer-diblock copolymer mixture under an oscillating shear field is investigated via cell dynamics simulation. The results indicate that the macrophase separation of the composite system is accompanied by the   corresponding microphase separation induced by the oscillating shear field. With an increase in the shear frequency, the AB phase changes from a tilted layered structure to a parallel layered structure, and finally to a vertical layered structure. The CD phase transforms from the initial concentric ring into a parallel layer in the ring and then into a parallel layered structure; thus, the system finally forms a layered structure of the AB phase (vertical layer) and CD phase (parallel layer) perpendicular to each other. To verify the phase transition, the dynamic evolution of the domain size at different shear frequencies is analysed. The ordered phase transition with an increase in the oscillating shear field varies when the initial composition ratio of the system is changed. This conclusion provides a valuable guidance for the formation and transformation of ordered structures in experiments.

References

Bates C. M., Bates F. S., Macromolecules, 2017, 50, 3. DOI: https://doi.org/10.1021/acs.macromol.6b02355

Thorkelsson K., Bai P., Xu T., Nano Today, 2015, 10, 48. DOI: https://doi.org/10.1016/j.nantod.2014.12.005

Jacoby M., Chem. Eng. News, 2014, 92, 8. DOI: https://doi.org/10.1021/cen-09245-notw6

Elabd Y. A., Hickner M. A., Macromolecules, 2011, 44, 1. DOI: https://doi.org/10.1021/ma101247c

Yang S. Y., Yang J. A., Kim E. S., Jeon G., Oh E. J., Choi K. Y., Hahn S. K., Kim J. K., ACS Nano, 2010, 4, 3817. DOI: https://doi.org/10.1021/nn100464u

Gu W., Hun J., Hong S. W., Sveinbjornsson B. R., Park C., Grubbs R. H., Russell T. P., ACS Nano, 2015, 9, 7729. DOI: https://doi.org/10.1021/acsnano.5b03233

Shao Z., Zhang D., Hu W., Xu Y., Li W., Polymer, 2019, 177, 202. DOI: https://doi.org/10.1016/j.polymer.2019.05.062

Shi L. Y., Lan J., Lee S., Cheng L. C., Yager K. G., Ross C. A., ACS Nano, 2020, 14, 4289. DOI: https://doi.org/10.1021/acsnano.9b09702

Jun T., Lee Y., Jo S., Ryu C. Y., Ryu D. Y., Macromolecules, 2018, 51, 282. DOI: https://doi.org/10.1021/acs.macromol.7b01946

Hickey R. J., Gillard T. M., Lodge T. P., Bates F. S., ACS Macro Lett., 2015, 4, 260. DOI: https://doi.org/10.1021/acsmacrolett.5b00014

Habersberger B. M., Gillard T. M., Hickey R. J., Lodge T. P., Bates F. S., ACS Macro Lett., 2014, 3, 1041. DOI: https://doi.org/10.1021/mz500531y

Irwin M. T., Hickey R. J., Xie S., So S., Bates F. S., Lodge T. P., Macromolecules, 2016, 49, 6928. DOI: https://doi.org/10.1021/acs.macromol.6b01553

Zheng C., Zhang B., Bates F. S., Lodge T. P., Macromolecules, 2022, 55, 4766. DOI: https://doi.org/10.1021/acs.macromol.2c00518

Zhang B., Xie S., Lodge T. P., Bates F. S., Macromolecules, 2021, 54, 4605. DOI: https://doi.org/10.1021/acs.macromol.0c01745

Wang Z., Sun S., Li C., Hu S., Faller R., Soft Matter, 2017, 13, 5877. DOI: https://doi.org/10.1039/C7SM01194F

Sun M., Zhang J., Wang B., Wu H., Pan J., Phys. Rev. E, 2011, 84, 011802. DOI: https://doi.org/10.1103/PhysRevE.84.011802

Wright D. B., Patterson J. P., Pitto-Barry A., Lu A., Kirby N., Gianneschi N. C., Chassenieux C., Colombani O., O’Reilly R. K., Macromolecules, 2015, 48, 6516. DOI: https://doi.org/10.1021/acs.macromol.5b01426

Komura S., Kodama H., Phys. Rev. E, 1997, 55, 1722. DOI: https://doi.org/10.1103/PhysRevE.55.1722

Roan J. R., Shakhnovich E. I., Phys. Rev. E, 1999, 59, 2109. DOI: https://doi.org/10.1103/PhysRevE.59.2109

Martínez-Veracoechea F. J., Escobedo F. A., Macromolecules, 2009, 42, 1775. DOI: https://doi.org/10.1021/ma802427a

Liu D., Dai L., Duan X., Shi T., Zhang H., Chem. J. Chin. Univ., 2015, 36, 1752.

Xie J., Shi A., Giant, 2021, 5, 100043. DOI: https://doi.org/10.1016/j.giant.2020.100043

Su W. C., Wu Y. S., Wang C. F., Kuo S. W., Crystals, 2018, 8, 330. DOI: https://doi.org/10.3390/cryst8080330

Fan J. J., Yu X. L., Liang X. M., Acta Phys. Sin., 2013, 62, 158105. DOI: https://doi.org/10.7498/aps.62.158105

Pan J. X., Zhang J. J., Wang B. F., Wu H. S., Sun M. N., Chin. Phys. B, 2013, 22, 026401. DOI: https://doi.org/10.1088/1674-1056/22/2/026401

Pan J. X., Zhang J. J.,Wang B. F.,Wu H. S., Sun M. N., Chin. Phys. Lett., 2013, 30, 046401. DOI: https://doi.org/10.1088/0256-307X/30/4/046401

Pinna M., Zvelindovsky A. V., Todd S., Goldbeck-Wood G., J. Chem. Phys., 2006, 125, 154905.

Pinna M., Zvelindovsky A. V., Guo X., Stokes C. L., Soft Matter, 2011, 7, 6991. DOI: https://doi.org/10.1039/c1sm05478c

Dessí R., Pinna M., Zvelindovsky A. V., Macromolecules, 2013, 46, 1923. DOI: https://doi.org/10.1021/ma400124j

Chen Y., Xu Q., Jin Y., Qian X., Ma R., Liu J., Yang D., Soft Matter, 2018, 14, 6635. DOI: https://doi.org/10.1039/C8SM00833G

Juan Y. T., Lai Y. F., Li X., Tai T. C., Lin C. H., Huang C. F., Li B., Shi A. C., Hsueh H. Y., Macromolecules, 2023, 56, 457. DOI: https://doi.org/10.1021/acs.macromol.2c02086

Guo Y., Zhang J., Wang B., Wu H., Sun M., Pan J., Condens. Matter Phys., 2015, 18, 23801. DOI: https://doi.org/10.5488/CMP.18.23801

Borthakur M. P., Nath B., Biswas G., Phys. Rev. Fluids, 2021, 6, 023603. DOI: https://doi.org/10.1103/PhysRevFluids.6.023603

Majidi M., Bijarchi M. A., Arani A. G., Rahimian M. H., Shafii M. B., Int. J. Multiphase Flow, 2022, 146, 103846. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2021.103846

Guo Y. Q., Pan J. X., Zhang J. J., Sun M. N., Wang B. F., Wu H. Sh., Condens. Matter Phys., 2016, 19, 33601. DOI: https://doi.org/10.5488/CMP.19.33601

Wang K. Y., Ma C. Y., Yu H. M., Zhang H. T., Cen J. Y., Wang Y. Y., Pan J. X., Zhang J. J., Acta Phys. Sin., 2023, 72, 079401. DOI: https://doi.org/10.7498/aps.72.20222207

Kamkar M., Salehiyan R., Goudoulas T. B., Abbasi M., Saengow C., Erfanian E., Sadeghi S., Natale G., Rogers S. A., Giacomin A. J., Sundararaj U., Prog. Polym. Sci., 2022, 132, 101580. DOI: https://doi.org/10.1016/j.progpolymsci.2022.101580

Ginzburg V. V., Qiu F., Paniconi M., Peng G., Jasnow D., Balazs A. C., Phys. Rev. Lett., 1999, 82, 4026. DOI: https://doi.org/10.1103/PhysRevLett.82.4026

Ginzburg V. V., Peng G., Qiu F., Jasnow D., Balazs A. C., Phys. Rev. E, 1999, 60, 4352. DOI: https://doi.org/10.1103/PhysRevE.60.4352

Ito A., Phys. Rev. E, 1998, 58, 6158. DOI: https://doi.org/10.1103/PhysRevE.58.6158

Ohta T., Ito A., Phys. Rev. E, 1995, 52, 5250. DOI: https://doi.org/10.1103/PhysRevE.52.5250

Ohta T., Nozaki H., Doi M., J. Chem. Phys., 1990, 93, 2664.

Oono Y., Puri S., Phys. Rev. Lett., 1987, 58, 836. DOI: https://doi.org/10.1103/PhysRevLett.58.836

Oono Y., Puri S., Phys. Rev. A, 1988, 38, 434. DOI: https://doi.org/10.1103/PhysRevA.38.434

Puri S., Oono Y., Phys. Rev. A, 1988, 38, 1542. DOI: https://doi.org/10.1103/PhysRevA.38.1542

Shinozaki A., Oono Y., Phys. Rev. A, 1992, 45, R2161. DOI: https://doi.org/10.1103/PhysRevA.45.R2161

Doi M., Chen D., J. Chem. Phys., 1989, 90, 5271. DOI: https://doi.org/10.1063/1.456430

Chen D., Doi M., J. Chem. Phys., 1989, 91, 2656. DOI: https://doi.org/10.1063/1.456975

Ohta T., Nozaki H., Doi M., J. Chem. Phys., 1990, 93, 2664. DOI: https://doi.org/10.1063/1.458905

Ohta T., Enomoto Y., Harder J. L., Doi M., Macromolecules, 1993, 26, 4928. DOI: https://doi.org/10.1021/ma00070a029

Corberi F., Gonnella G., Lamura A., Phys. Rev. E, 2000, 62, 8064. DOI: https://doi.org/10.1103/PhysRevE.62.8064

Luo K., Yang Y., Polymer, 2004, 45, 6745. DOI: https://doi.org/10.1016/j.polymer.2004.07.059

Pinna M., Zvelindovsky A. V., Todd S., Goldbeck-Wood G., J. Chem. Phys., 2006, 125, 154905. DOI: https://doi.org/10.1063/1.2356468

Li W., Dong B., Yan L., Macromolecules, 2013, 46, 7465. DOI: https://doi.org/10.1021/ma4009884

Ohta T., Kawasaki K., Macromolecules, 1986, 19, 2621. DOI: https://doi.org/10.1021/ma00164a028

Published

2024-06-28

Issue

Section

Articles

Categories

How to Cite

[1]
Y. Guo, H. He, and X. Fu, “Self-assembly behaviour of diblock copolymer-diblock copolymer under oscillating shear field”, Condens. Matter Phys., vol. 27, no. 2, p. 23801, Jun. 2024, doi: 10.5488/cmp.27.23801.

Similar Articles

21-29 of 29

You may also start an advanced similarity search for this article.