Self-assembly behaviour of diblock copolymer-diblock copolymer under oscillating shear field
DOI:
https://doi.org/10.5488/cmp.27.23801Keywords:
diblock copolymer, oscillating shear field, self-assemblyAbstract
The self-assembly behaviour of a diblock copolymer-diblock copolymer mixture under an oscillating shear field is investigated via cell dynamics simulation. The results indicate that the macrophase separation of the composite system is accompanied by the corresponding microphase separation induced by the oscillating shear field. With an increase in the shear frequency, the AB phase changes from a tilted layered structure to a parallel layered structure, and finally to a vertical layered structure. The CD phase transforms from the initial concentric ring into a parallel layer in the ring and then into a parallel layered structure; thus, the system finally forms a layered structure of the AB phase (vertical layer) and CD phase (parallel layer) perpendicular to each other. To verify the phase transition, the dynamic evolution of the domain size at different shear frequencies is analysed. The ordered phase transition with an increase in the oscillating shear field varies when the initial composition ratio of the system is changed. This conclusion provides a valuable guidance for the formation and transformation of ordered structures in experiments.
References
Bates C. M., Bates F. S., Macromolecules, 2017, 50, 3. DOI: https://doi.org/10.1021/acs.macromol.6b02355
Thorkelsson K., Bai P., Xu T., Nano Today, 2015, 10, 48. DOI: https://doi.org/10.1016/j.nantod.2014.12.005
Jacoby M., Chem. Eng. News, 2014, 92, 8. DOI: https://doi.org/10.1021/cen-09245-notw6
Elabd Y. A., Hickner M. A., Macromolecules, 2011, 44, 1. DOI: https://doi.org/10.1021/ma101247c
Yang S. Y., Yang J. A., Kim E. S., Jeon G., Oh E. J., Choi K. Y., Hahn S. K., Kim J. K., ACS Nano, 2010, 4, 3817. DOI: https://doi.org/10.1021/nn100464u
Gu W., Hun J., Hong S. W., Sveinbjornsson B. R., Park C., Grubbs R. H., Russell T. P., ACS Nano, 2015, 9, 7729. DOI: https://doi.org/10.1021/acsnano.5b03233
Shao Z., Zhang D., Hu W., Xu Y., Li W., Polymer, 2019, 177, 202. DOI: https://doi.org/10.1016/j.polymer.2019.05.062
Shi L. Y., Lan J., Lee S., Cheng L. C., Yager K. G., Ross C. A., ACS Nano, 2020, 14, 4289. DOI: https://doi.org/10.1021/acsnano.9b09702
Jun T., Lee Y., Jo S., Ryu C. Y., Ryu D. Y., Macromolecules, 2018, 51, 282. DOI: https://doi.org/10.1021/acs.macromol.7b01946
Hickey R. J., Gillard T. M., Lodge T. P., Bates F. S., ACS Macro Lett., 2015, 4, 260. DOI: https://doi.org/10.1021/acsmacrolett.5b00014
Habersberger B. M., Gillard T. M., Hickey R. J., Lodge T. P., Bates F. S., ACS Macro Lett., 2014, 3, 1041. DOI: https://doi.org/10.1021/mz500531y
Irwin M. T., Hickey R. J., Xie S., So S., Bates F. S., Lodge T. P., Macromolecules, 2016, 49, 6928. DOI: https://doi.org/10.1021/acs.macromol.6b01553
Zheng C., Zhang B., Bates F. S., Lodge T. P., Macromolecules, 2022, 55, 4766. DOI: https://doi.org/10.1021/acs.macromol.2c00518
Zhang B., Xie S., Lodge T. P., Bates F. S., Macromolecules, 2021, 54, 4605. DOI: https://doi.org/10.1021/acs.macromol.0c01745
Wang Z., Sun S., Li C., Hu S., Faller R., Soft Matter, 2017, 13, 5877. DOI: https://doi.org/10.1039/C7SM01194F
Sun M., Zhang J., Wang B., Wu H., Pan J., Phys. Rev. E, 2011, 84, 011802. DOI: https://doi.org/10.1103/PhysRevE.84.011802
Wright D. B., Patterson J. P., Pitto-Barry A., Lu A., Kirby N., Gianneschi N. C., Chassenieux C., Colombani O., O’Reilly R. K., Macromolecules, 2015, 48, 6516. DOI: https://doi.org/10.1021/acs.macromol.5b01426
Komura S., Kodama H., Phys. Rev. E, 1997, 55, 1722. DOI: https://doi.org/10.1103/PhysRevE.55.1722
Roan J. R., Shakhnovich E. I., Phys. Rev. E, 1999, 59, 2109. DOI: https://doi.org/10.1103/PhysRevE.59.2109
Martínez-Veracoechea F. J., Escobedo F. A., Macromolecules, 2009, 42, 1775. DOI: https://doi.org/10.1021/ma802427a
Liu D., Dai L., Duan X., Shi T., Zhang H., Chem. J. Chin. Univ., 2015, 36, 1752.
Xie J., Shi A., Giant, 2021, 5, 100043. DOI: https://doi.org/10.1016/j.giant.2020.100043
Su W. C., Wu Y. S., Wang C. F., Kuo S. W., Crystals, 2018, 8, 330. DOI: https://doi.org/10.3390/cryst8080330
Fan J. J., Yu X. L., Liang X. M., Acta Phys. Sin., 2013, 62, 158105. DOI: https://doi.org/10.7498/aps.62.158105
Pan J. X., Zhang J. J., Wang B. F., Wu H. S., Sun M. N., Chin. Phys. B, 2013, 22, 026401. DOI: https://doi.org/10.1088/1674-1056/22/2/026401
Pan J. X., Zhang J. J.,Wang B. F.,Wu H. S., Sun M. N., Chin. Phys. Lett., 2013, 30, 046401. DOI: https://doi.org/10.1088/0256-307X/30/4/046401
Pinna M., Zvelindovsky A. V., Todd S., Goldbeck-Wood G., J. Chem. Phys., 2006, 125, 154905.
Pinna M., Zvelindovsky A. V., Guo X., Stokes C. L., Soft Matter, 2011, 7, 6991. DOI: https://doi.org/10.1039/c1sm05478c
Dessí R., Pinna M., Zvelindovsky A. V., Macromolecules, 2013, 46, 1923. DOI: https://doi.org/10.1021/ma400124j
Chen Y., Xu Q., Jin Y., Qian X., Ma R., Liu J., Yang D., Soft Matter, 2018, 14, 6635. DOI: https://doi.org/10.1039/C8SM00833G
Juan Y. T., Lai Y. F., Li X., Tai T. C., Lin C. H., Huang C. F., Li B., Shi A. C., Hsueh H. Y., Macromolecules, 2023, 56, 457. DOI: https://doi.org/10.1021/acs.macromol.2c02086
Guo Y., Zhang J., Wang B., Wu H., Sun M., Pan J., Condens. Matter Phys., 2015, 18, 23801. DOI: https://doi.org/10.5488/CMP.18.23801
Borthakur M. P., Nath B., Biswas G., Phys. Rev. Fluids, 2021, 6, 023603. DOI: https://doi.org/10.1103/PhysRevFluids.6.023603
Majidi M., Bijarchi M. A., Arani A. G., Rahimian M. H., Shafii M. B., Int. J. Multiphase Flow, 2022, 146, 103846. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2021.103846
Guo Y. Q., Pan J. X., Zhang J. J., Sun M. N., Wang B. F., Wu H. Sh., Condens. Matter Phys., 2016, 19, 33601. DOI: https://doi.org/10.5488/CMP.19.33601
Wang K. Y., Ma C. Y., Yu H. M., Zhang H. T., Cen J. Y., Wang Y. Y., Pan J. X., Zhang J. J., Acta Phys. Sin., 2023, 72, 079401. DOI: https://doi.org/10.7498/aps.72.20222207
Kamkar M., Salehiyan R., Goudoulas T. B., Abbasi M., Saengow C., Erfanian E., Sadeghi S., Natale G., Rogers S. A., Giacomin A. J., Sundararaj U., Prog. Polym. Sci., 2022, 132, 101580. DOI: https://doi.org/10.1016/j.progpolymsci.2022.101580
Ginzburg V. V., Qiu F., Paniconi M., Peng G., Jasnow D., Balazs A. C., Phys. Rev. Lett., 1999, 82, 4026. DOI: https://doi.org/10.1103/PhysRevLett.82.4026
Ginzburg V. V., Peng G., Qiu F., Jasnow D., Balazs A. C., Phys. Rev. E, 1999, 60, 4352. DOI: https://doi.org/10.1103/PhysRevE.60.4352
Ito A., Phys. Rev. E, 1998, 58, 6158. DOI: https://doi.org/10.1103/PhysRevE.58.6158
Ohta T., Ito A., Phys. Rev. E, 1995, 52, 5250. DOI: https://doi.org/10.1103/PhysRevE.52.5250
Ohta T., Nozaki H., Doi M., J. Chem. Phys., 1990, 93, 2664.
Oono Y., Puri S., Phys. Rev. Lett., 1987, 58, 836. DOI: https://doi.org/10.1103/PhysRevLett.58.836
Oono Y., Puri S., Phys. Rev. A, 1988, 38, 434. DOI: https://doi.org/10.1103/PhysRevA.38.434
Puri S., Oono Y., Phys. Rev. A, 1988, 38, 1542. DOI: https://doi.org/10.1103/PhysRevA.38.1542
Shinozaki A., Oono Y., Phys. Rev. A, 1992, 45, R2161. DOI: https://doi.org/10.1103/PhysRevA.45.R2161
Doi M., Chen D., J. Chem. Phys., 1989, 90, 5271. DOI: https://doi.org/10.1063/1.456430
Chen D., Doi M., J. Chem. Phys., 1989, 91, 2656. DOI: https://doi.org/10.1063/1.456975
Ohta T., Nozaki H., Doi M., J. Chem. Phys., 1990, 93, 2664. DOI: https://doi.org/10.1063/1.458905
Ohta T., Enomoto Y., Harder J. L., Doi M., Macromolecules, 1993, 26, 4928. DOI: https://doi.org/10.1021/ma00070a029
Corberi F., Gonnella G., Lamura A., Phys. Rev. E, 2000, 62, 8064. DOI: https://doi.org/10.1103/PhysRevE.62.8064
Luo K., Yang Y., Polymer, 2004, 45, 6745. DOI: https://doi.org/10.1016/j.polymer.2004.07.059
Pinna M., Zvelindovsky A. V., Todd S., Goldbeck-Wood G., J. Chem. Phys., 2006, 125, 154905. DOI: https://doi.org/10.1063/1.2356468
Li W., Dong B., Yan L., Macromolecules, 2013, 46, 7465. DOI: https://doi.org/10.1021/ma4009884
Ohta T., Kawasaki K., Macromolecules, 1986, 19, 2621. DOI: https://doi.org/10.1021/ma00164a028
Downloads
Published
License
Copyright (c) 2024 Y. Guo, H. He, X. Fu
This work is licensed under a Creative Commons Attribution 4.0 International License.