Theoretical study of thermoelectric properties of CeIr4P12 filled skutterudite for energy conversion
DOI:
https://doi.org/10.5488/cmp.28.13701Keywords:
DFT, physical properties, skutterudites, transport properties, numerical simulation, thermoelectric propretiesAbstract
The structural, elastic, thermodynamic and thermoelectric characteristics of the CeIr4P12 skutterudite have been predicted for the first time by applying density functional theory and the semi-classical Boltzmann simulations. Firstly, the structural-magnetic stability was verified through ground-state energy calculations obtained from structural optimizations. The predicted single-crystal elastic constants (Cij) show that the title compound is mechanically stable. At the same time, it turns out to be dynamically stable where all the calculated phonon frequencies have positive values. The cohesive energy was calculated to verify the energy stability of the material considered. We also determined the variations of some macroscopic physical parameters as functions of temperature, namely the thermal expansion coefficient, the lattice thermal conductivity. Furthermore, we investigated the temperature dependencies of some thermoelectric coefficients such as electronic thermal conductivity, and figure of merit. Such encouraging results indicate that the compound is a potential candidate for thermoelectric devices.
References
Andrea L., Modélisation du Transport Thermique Dans des Matériaux Thermoélectriques, Ph.D. thesis, Université Pierre et Marie Curie-Paris VI, 2016, (in French).
Kashyap M. K., Singla R., In: Thermoelectricity and Advanced Thermoelectric Materials, Kumar R., Singh R. (Eds.), Elsevier, 2021, 163–193. DOI: https://doi.org/10.1016/B978-0-12-819984-8.00007-2
Shen Z. G., Tian L. L., Liu X., Energy Convers. Manage., 2019, 195, 1138–1173. DOI: https://doi.org/10.1016/j.enconman.2019.05.087
Woerner D., J. Electron. Mater., 2016, 45, 1278–1283. DOI: https://doi.org/10.1007/s11664-015-3998-8
Holgate T. C., Bennett R., Hammel T., Caillat T., Keyser S., Sievers B., J. Electron.Mater., 2015, 44, 1814–1821. DOI: https://doi.org/10.1007/s11664-014-3564-9
Karthick K., Suresh S., Hussain M. M. M., Ali H. M., Kumar C. S., Sol. Energy, 2019, 188, 111–142. DOI: https://doi.org/10.1016/j.solener.2019.05.075
Jaziri N., Boughamoura A., Müller J., Mezghani B., Tounsi F., Ismail M., Energy Rep., 2020, 6, 264–287. DOI: https://doi.org/10.1016/j.egyr.2019.12.011
Champier D., Energy Convers. Manage., 2017, 140, 167–181. DOI: https://doi.org/10.1016/j.enconman.2017.02.070
He R., Schierning G., Nielsch K., Adv. Mater. Technol., 2018, 3, No. 4, 1700256. DOI: https://doi.org/10.1002/admt.201700256
Shang H., Gu H., Ding F., Ren Z., Appl. Phys. Lett., 2021, 118, No. 17. DOI: https://doi.org/10.1063/5.0049451
Zoui M. A., Bentouba S., Stocholm J. G., Bourouis M., Energies, 2020, 13, No. 14, 3606. DOI: https://doi.org/10.3390/en13143606
Gayner C., Kar K. K., Prog. Mater. Sci., 2016, 83, 330–382. DOI: https://doi.org/10.1016/j.pmatsci.2016.07.002
Zair A., Nabil Brahmi B.-E., Bekhechi S., Int. J. Mod. Phys. C, 2023, 34, No. 10, 2350130. DOI: https://doi.org/10.1142/S0129183123501309
Zair A., Nabil Brahmi B.-E., Ouahrani T., Nabila Niama K., Bekhechi S., SPIN, 2022, 12, No. 02, 2250011. DOI: https://doi.org/10.1142/S2010324722500114
Goldsmid H. J., Introduction to Thermoelectricity, Vol. 121, Springer, 2010. DOI: https://doi.org/10.1007/978-3-642-00716-3
Wei K., Skutterudite Derivatives: A Fundamental Investigation with Potential for Thermoelectric Applications, Ph.D. thesis, University of South Florida, 2014.
Breithaupt A., Ann. Phys. (Berlin, Ger.), 1827, 85, No. 1, 115–116, (in German). DOI: https://doi.org/10.1002/andp.18270850110
Benhalima Z., Optimisation des performances thermoélectriques des composées Skutterudites, Ph.D. thesis, Universié Mustapha Stambouli Mascara, 2021.
Oftedal I., Z. Kristallogr. - Cryst. Mater., 1928, 66, No. 1–6, 517–546, (in German). DOI: https://doi.org/10.1524/zkri.1928.66.1.517
Bashir M. B. A., Sabri M. F. M., Said S. M., Miyazaki Y., Badruddin I. A., Shnawah D. A. A., Salih E. Y., Abushousha S., Elsheikh M. H., J. Solid State Chem., 2020, 284, 121205. DOI: https://doi.org/10.1016/j.jssc.2020.121205
Liu Z., Meng X., Qin D., Cui B., Wu H., Zhang Y., Pennycook S. J., Cai W., Sui J., J. Mater. Chem. C, 2019, 7, No. 43, 13622–13631. DOI: https://doi.org/10.1039/C9TC03839F
Qin D., Shi W., Xue W., Qin H., Cao J., Cai W., Wang Y., Sui J., Mater. Today Phys., 2020, 13, 100206. DOI: https://doi.org/10.1016/j.mtphys.2020.100206
Masarrat A., Bhogra A., Meena R., Sinduja M., Hasina D., Amirthapandian S., Devi D., Som T., Niazi A., Kandasami A., J. Mater. Sci.: Mater. Electron., 2021, 32, No. 23, 27801–27814. DOI: https://doi.org/10.1007/s10854-021-07163-z
Al Malki M. M., Shi X., Qiu P., Snyder G. J., Dunand D. C., J. Materiomics, 2021, 7, No. 1, 89–97. DOI: https://doi.org/10.1016/j.jmat.2020.07.012
Jiang J., Zhang R., Yang C., Niu Y., Zhou T., Pan Y., Wang C., J. Materiomics, 2020, 6, No. 2, 240–247. DOI: https://doi.org/10.1016/j.jmat.2020.02.005
Nolas G. S., Cohn J., Slack G., Phys. Rev. B, 1998, 58, No. 1, 164. DOI: https://doi.org/10.1103/PhysRevB.58.164
Sanada S., Aoki Y., Aoki H., Tsuchiya A., Kikuchi D., Sugawara H., Sato H., J. Phys. Soc. Jpn., 2005, 74, No. 1, 246–249. DOI: https://doi.org/10.1143/JPSJ.74.246
Chaki T., Shankar A., Mandal P., Comput. Condens. Matter, 2021, 26, e00535. DOI: https://doi.org/10.1016/j.cocom.2020.e00535
Shankar A., Rai D., Sandeep, Ghimire M., Thapa R., Indian J. Phys., 2017, 91, 17–23. DOI: https://doi.org/10.1007/s12648-016-0896-8
Abdelakader A., Ahmed B., Noureddine M., Mokhtar B., Abdelhalim Z., Omar M., Djillali B., Yahia A., Al-Douri Y., Solid State Commun., 2024, 380, 115435. DOI: https://doi.org/10.1016/j.ssc.2024.115435
Blaha P., Schwarz K., Madsen G. K., Kvasnicka D., Luitz J., WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology Austria, Vienna, 2001.
Sayah M., Zeffane S., Mokhtari M., Dahmane F., Zekri L., Khenata R., Zekri N., Condens. Matter Phys., 2021, 24, No. 2, 23703. DOI: https://doi.org/10.5488/CMP.24.23703
Zeffane S., Sayah M., Dahmane F., Mokhtari M., Zekri L., Khenata R., Zekri N., Condens. Matter Phys., 2021, 24, No. 1, 13703. DOI: https://doi.org/10.5488/CMP.24.13703
Adnane M., Djoudi L., Merabet M., Boucharef M., Dahmane F., Benalia S., Mokhtari M., Rached D., Condens. Matter Phys., 2020, 23, No. 3, 33705. DOI: https://doi.org/10.5488/CMP.23.33705
Wu Z., Cohen R. E., Phys. Rev. B, 2006, 73, No. 23, 235116. DOI: https://doi.org/10.1103/PhysRevB.73.235116
Becke A. D., J. Chem. Phys., 1993, 98, No. 2, 1372–1377. DOI: https://doi.org/10.1063/1.464304
Calderon C. E., Plata J. J., Toher C., Oses C., Levy O., Fornari M., Natan A., Mehl M. J., Hart G., Nardelli M. B., Curtarolo S., Comput. Mater. Sci., 2015, 108, 233–238. DOI: https://doi.org/10.1016/j.commatsci.2015.07.019
Togo A., Tanaka I., Scr. Mater., 2015, 108, 1–5. DOI: https://doi.org/10.1016/j.scriptamat.2015.07.021
Otero-De-La-Roza A., Abbasi-Pérez D., Luaña V., Comput. Phys. Commun., 2011, 182, No. 10, 2232–2248. DOI: https://doi.org/10.1016/j.cpc.2011.05.009
Otero-De-La-Roza A., Luaña V., Comput. Phys. Commun., 2011, 182, No. 8, 1708–1720. DOI: https://doi.org/10.1016/j.cpc.2011.04.016
Allen P. B., In: Quantum Theory of Real Materials, Chelikowsky J. R., Louie S. G. (Eds.), Kluwer, Boston, 1996, 219–250. DOI: https://doi.org/10.1007/978-1-4613-0461-6_17
Madsen G. K., Carrete J., Verstraete M. J., Comput. Phys. Commun., 2018, 231, 140–145. DOI: https://doi.org/10.1016/j.cpc.2018.05.010
Murnaghan F. D., Proc. Natl. Acad. Sci. U. S. A., 1944, 30, No. 9, 244–247. DOI: https://doi.org/10.1073/pnas.30.9.244
Nolas G., Morelli D., Tritt T. M., Annu. Rev. Mater. Sci., 1999, 29, No. 1, 89–116. DOI: https://doi.org/10.1146/annurev.matsci.29.1.89
Born M., Huang K., Dynamical Theory of Crystal Lattices, Oxford University Press, New York, 1996. DOI: https://doi.org/10.1093/oso/9780192670083.001.0001
Voigt W., Lehrbuch der Kristallphysik, Teubner Verlag, Leipzig, 1928, (in German).
Reuß A., Z. Angew. Math. Mech., 1929, 9, No. 1, 49–58, (in German). DOI: https://doi.org/10.1002/zamm.19290090104
Hill R., Proc. Phys. Soc., London, Sect. A, 1952, 65, No. 5, 349. DOI: https://doi.org/10.1088/0370-1298/65/5/307
Pugh S., London, Edinburgh Dublin Philos. Mag. J. Sci., 1954, 45, No. 367, 823–843. DOI: https://doi.org/10.1080/14786440808520496
Haines J., Léger J., Bocquillon G., Annu. Rev. Mater. Res., 2001, 31, No. 1, 1–23. DOI: https://doi.org/10.1146/annurev.matsci.31.1.1
Born M., HeisenbergW., In: Original Scientific PapersWissenschaftliche Originalarbeiten.Werner Heisenberg Gesammelte Werke Collected Works, Vol. A/1, Blum W., Rechenberg H., Dürr H. P. (Eds.), Springer, Berlin, Heidelberg, 1985, 216–246, in German.
Debye P., Ann. Phys. (Berlin, Ger.), 1926, 386, No. 25, 1154–1160, (in German). DOI: https://doi.org/10.1002/andp.19263862517
Dulong P. L., Petit A. T., Ann. Chim. Phys., 1819, 10, 395–413, (in French).
Slack G. A., J. Phys. Chem. Solids, 1973, 34, No. 2, 321–335. DOI: https://doi.org/10.1016/0022-3697(73)90092-9
Downloads
Published
License
Copyright (c) 2025 M. Bouchenaki, L. I. Karaouzène, B. N. Brahmi, M. Kaid Slimane

This work is licensed under a Creative Commons Attribution 4.0 International License.