Theoretical study of thermoelectric properties of CeIr4P12 filled skutterudite for energy conversion

Authors

DOI:

https://doi.org/10.5488/cmp.28.13701

Keywords:

DFT, physical properties, skutterudites, transport properties, numerical simulation, thermoelectric propreties

Abstract

The structural, elastic, thermodynamic and thermoelectric characteristics of the CeIr4P12 skutterudite have been predicted for the first time by applying density functional theory and the semi-classical Boltzmann simulations. Firstly, the structural-magnetic stability was verified through ground-state energy calculations obtained from structural optimizations. The predicted single-crystal elastic constants (Cij) show that the title compound is mechanically stable. At the same time, it turns out to be dynamically stable where all the calculated phonon frequencies have positive values. The cohesive energy was calculated to verify the energy stability of the material considered. We also determined the variations of some macroscopic physical parameters as functions of temperature, namely the thermal expansion coefficient, the lattice thermal conductivity. Furthermore, we investigated the temperature dependencies of some thermoelectric coefficients such as electronic thermal conductivity, and figure of merit. Such encouraging results indicate that the compound is a potential candidate for thermoelectric devices.

 

References

Andrea L., Modélisation du Transport Thermique Dans des Matériaux Thermoélectriques, Ph.D. thesis, Université Pierre et Marie Curie-Paris VI, 2016, (in French).

Kashyap M. K., Singla R., In: Thermoelectricity and Advanced Thermoelectric Materials, Kumar R., Singh R. (Eds.), Elsevier, 2021, 163–193. DOI: https://doi.org/10.1016/B978-0-12-819984-8.00007-2

Shen Z. G., Tian L. L., Liu X., Energy Convers. Manage., 2019, 195, 1138–1173. DOI: https://doi.org/10.1016/j.enconman.2019.05.087

Woerner D., J. Electron. Mater., 2016, 45, 1278–1283. DOI: https://doi.org/10.1007/s11664-015-3998-8

Holgate T. C., Bennett R., Hammel T., Caillat T., Keyser S., Sievers B., J. Electron.Mater., 2015, 44, 1814–1821. DOI: https://doi.org/10.1007/s11664-014-3564-9

Karthick K., Suresh S., Hussain M. M. M., Ali H. M., Kumar C. S., Sol. Energy, 2019, 188, 111–142. DOI: https://doi.org/10.1016/j.solener.2019.05.075

Jaziri N., Boughamoura A., Müller J., Mezghani B., Tounsi F., Ismail M., Energy Rep., 2020, 6, 264–287. DOI: https://doi.org/10.1016/j.egyr.2019.12.011

Champier D., Energy Convers. Manage., 2017, 140, 167–181. DOI: https://doi.org/10.1016/j.enconman.2017.02.070

He R., Schierning G., Nielsch K., Adv. Mater. Technol., 2018, 3, No. 4, 1700256. DOI: https://doi.org/10.1002/admt.201700256

Shang H., Gu H., Ding F., Ren Z., Appl. Phys. Lett., 2021, 118, No. 17. DOI: https://doi.org/10.1063/5.0049451

Zoui M. A., Bentouba S., Stocholm J. G., Bourouis M., Energies, 2020, 13, No. 14, 3606. DOI: https://doi.org/10.3390/en13143606

Gayner C., Kar K. K., Prog. Mater. Sci., 2016, 83, 330–382. DOI: https://doi.org/10.1016/j.pmatsci.2016.07.002

Zair A., Nabil Brahmi B.-E., Bekhechi S., Int. J. Mod. Phys. C, 2023, 34, No. 10, 2350130. DOI: https://doi.org/10.1142/S0129183123501309

Zair A., Nabil Brahmi B.-E., Ouahrani T., Nabila Niama K., Bekhechi S., SPIN, 2022, 12, No. 02, 2250011. DOI: https://doi.org/10.1142/S2010324722500114

Goldsmid H. J., Introduction to Thermoelectricity, Vol. 121, Springer, 2010. DOI: https://doi.org/10.1007/978-3-642-00716-3

Wei K., Skutterudite Derivatives: A Fundamental Investigation with Potential for Thermoelectric Applications, Ph.D. thesis, University of South Florida, 2014.

Breithaupt A., Ann. Phys. (Berlin, Ger.), 1827, 85, No. 1, 115–116, (in German). DOI: https://doi.org/10.1002/andp.18270850110

Benhalima Z., Optimisation des performances thermoélectriques des composées Skutterudites, Ph.D. thesis, Universié Mustapha Stambouli Mascara, 2021.

Oftedal I., Z. Kristallogr. - Cryst. Mater., 1928, 66, No. 1–6, 517–546, (in German). DOI: https://doi.org/10.1524/zkri.1928.66.1.517

Bashir M. B. A., Sabri M. F. M., Said S. M., Miyazaki Y., Badruddin I. A., Shnawah D. A. A., Salih E. Y., Abushousha S., Elsheikh M. H., J. Solid State Chem., 2020, 284, 121205. DOI: https://doi.org/10.1016/j.jssc.2020.121205

Liu Z., Meng X., Qin D., Cui B., Wu H., Zhang Y., Pennycook S. J., Cai W., Sui J., J. Mater. Chem. C, 2019, 7, No. 43, 13622–13631. DOI: https://doi.org/10.1039/C9TC03839F

Qin D., Shi W., Xue W., Qin H., Cao J., Cai W., Wang Y., Sui J., Mater. Today Phys., 2020, 13, 100206. DOI: https://doi.org/10.1016/j.mtphys.2020.100206

Masarrat A., Bhogra A., Meena R., Sinduja M., Hasina D., Amirthapandian S., Devi D., Som T., Niazi A., Kandasami A., J. Mater. Sci.: Mater. Electron., 2021, 32, No. 23, 27801–27814. DOI: https://doi.org/10.1007/s10854-021-07163-z

Al Malki M. M., Shi X., Qiu P., Snyder G. J., Dunand D. C., J. Materiomics, 2021, 7, No. 1, 89–97. DOI: https://doi.org/10.1016/j.jmat.2020.07.012

Jiang J., Zhang R., Yang C., Niu Y., Zhou T., Pan Y., Wang C., J. Materiomics, 2020, 6, No. 2, 240–247. DOI: https://doi.org/10.1016/j.jmat.2020.02.005

Nolas G. S., Cohn J., Slack G., Phys. Rev. B, 1998, 58, No. 1, 164. DOI: https://doi.org/10.1103/PhysRevB.58.164

Sanada S., Aoki Y., Aoki H., Tsuchiya A., Kikuchi D., Sugawara H., Sato H., J. Phys. Soc. Jpn., 2005, 74, No. 1, 246–249. DOI: https://doi.org/10.1143/JPSJ.74.246

Chaki T., Shankar A., Mandal P., Comput. Condens. Matter, 2021, 26, e00535. DOI: https://doi.org/10.1016/j.cocom.2020.e00535

Shankar A., Rai D., Sandeep, Ghimire M., Thapa R., Indian J. Phys., 2017, 91, 17–23. DOI: https://doi.org/10.1007/s12648-016-0896-8

Abdelakader A., Ahmed B., Noureddine M., Mokhtar B., Abdelhalim Z., Omar M., Djillali B., Yahia A., Al-Douri Y., Solid State Commun., 2024, 380, 115435. DOI: https://doi.org/10.1016/j.ssc.2024.115435

Blaha P., Schwarz K., Madsen G. K., Kvasnicka D., Luitz J., WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology Austria, Vienna, 2001.

Sayah M., Zeffane S., Mokhtari M., Dahmane F., Zekri L., Khenata R., Zekri N., Condens. Matter Phys., 2021, 24, No. 2, 23703. DOI: https://doi.org/10.5488/CMP.24.23703

Zeffane S., Sayah M., Dahmane F., Mokhtari M., Zekri L., Khenata R., Zekri N., Condens. Matter Phys., 2021, 24, No. 1, 13703. DOI: https://doi.org/10.5488/CMP.24.13703

Adnane M., Djoudi L., Merabet M., Boucharef M., Dahmane F., Benalia S., Mokhtari M., Rached D., Condens. Matter Phys., 2020, 23, No. 3, 33705. DOI: https://doi.org/10.5488/CMP.23.33705

Wu Z., Cohen R. E., Phys. Rev. B, 2006, 73, No. 23, 235116. DOI: https://doi.org/10.1103/PhysRevB.73.235116

Becke A. D., J. Chem. Phys., 1993, 98, No. 2, 1372–1377. DOI: https://doi.org/10.1063/1.464304

Calderon C. E., Plata J. J., Toher C., Oses C., Levy O., Fornari M., Natan A., Mehl M. J., Hart G., Nardelli M. B., Curtarolo S., Comput. Mater. Sci., 2015, 108, 233–238. DOI: https://doi.org/10.1016/j.commatsci.2015.07.019

Togo A., Tanaka I., Scr. Mater., 2015, 108, 1–5. DOI: https://doi.org/10.1016/j.scriptamat.2015.07.021

Otero-De-La-Roza A., Abbasi-Pérez D., Luaña V., Comput. Phys. Commun., 2011, 182, No. 10, 2232–2248. DOI: https://doi.org/10.1016/j.cpc.2011.05.009

Otero-De-La-Roza A., Luaña V., Comput. Phys. Commun., 2011, 182, No. 8, 1708–1720. DOI: https://doi.org/10.1016/j.cpc.2011.04.016

Allen P. B., In: Quantum Theory of Real Materials, Chelikowsky J. R., Louie S. G. (Eds.), Kluwer, Boston, 1996, 219–250. DOI: https://doi.org/10.1007/978-1-4613-0461-6_17

Madsen G. K., Carrete J., Verstraete M. J., Comput. Phys. Commun., 2018, 231, 140–145. DOI: https://doi.org/10.1016/j.cpc.2018.05.010

Murnaghan F. D., Proc. Natl. Acad. Sci. U. S. A., 1944, 30, No. 9, 244–247. DOI: https://doi.org/10.1073/pnas.30.9.244

Nolas G., Morelli D., Tritt T. M., Annu. Rev. Mater. Sci., 1999, 29, No. 1, 89–116. DOI: https://doi.org/10.1146/annurev.matsci.29.1.89

Born M., Huang K., Dynamical Theory of Crystal Lattices, Oxford University Press, New York, 1996. DOI: https://doi.org/10.1093/oso/9780192670083.001.0001

Voigt W., Lehrbuch der Kristallphysik, Teubner Verlag, Leipzig, 1928, (in German).

Reuß A., Z. Angew. Math. Mech., 1929, 9, No. 1, 49–58, (in German). DOI: https://doi.org/10.1002/zamm.19290090104

Hill R., Proc. Phys. Soc., London, Sect. A, 1952, 65, No. 5, 349. DOI: https://doi.org/10.1088/0370-1298/65/5/307

Pugh S., London, Edinburgh Dublin Philos. Mag. J. Sci., 1954, 45, No. 367, 823–843. DOI: https://doi.org/10.1080/14786440808520496

Haines J., Léger J., Bocquillon G., Annu. Rev. Mater. Res., 2001, 31, No. 1, 1–23. DOI: https://doi.org/10.1146/annurev.matsci.31.1.1

Born M., HeisenbergW., In: Original Scientific PapersWissenschaftliche Originalarbeiten.Werner Heisenberg Gesammelte Werke Collected Works, Vol. A/1, Blum W., Rechenberg H., Dürr H. P. (Eds.), Springer, Berlin, Heidelberg, 1985, 216–246, in German.

Debye P., Ann. Phys. (Berlin, Ger.), 1926, 386, No. 25, 1154–1160, (in German). DOI: https://doi.org/10.1002/andp.19263862517

Dulong P. L., Petit A. T., Ann. Chim. Phys., 1819, 10, 395–413, (in French).

Slack G. A., J. Phys. Chem. Solids, 1973, 34, No. 2, 321–335. DOI: https://doi.org/10.1016/0022-3697(73)90092-9

Published

2025-03-28

How to Cite

[1]
M. Bouchenaki, L. I. Karaouzène, B. N. Brahmi, and M. Kaid Slimane, “Theoretical study of thermoelectric properties of CeIr4P12 filled skutterudite for energy conversion”, Condens. Matter Phys., vol. 28, no. 1, p. 13701, Mar. 2025, doi: 10.5488/cmp.28.13701.

Similar Articles

1-10 of 49

You may also start an advanced similarity search for this article.