Eigensolutions and thermodynamic properties of generalized hyperbolic Hulthen and Woods-Saxon potential
DOI:
https://doi.org/10.5488/cmp.27.43301Keywords:
eigensolutions, thermodynamic properties, parametric Nikiforov-Uvarov method, hyperbolic Hulthen and Woods-Saxon potentialsAbstract
In this paper, we present the solutions of the Schrödinger equation and the thermodynamic properties of generalized hyperbolic Hulthen and Woods-Saxon potential. The eigenvalues and eigenfunctions were found using the parametric Nikiforov-Uvarov method (PNUM). The clean energies of the molecules HCl, NiC, CO, I2, H2, LiH, CuLi and CrH are calculated for certain values of n and l. They are positive and close to the energy of the ground state (n = l = 0) in the case of the atomic unit (whose energies become negative for n = 2). The figures show that the proper energies decrease as n, l, α increase, while they increase as m increases, which confirms the results obtained in the literature. The obtained energy was used to calculate the partition function from which thermodynamic properties such as average energy, specific heat capacity, entropy and free energy are calculated. Numerical results are generated for this generalized hyperbolic Hulthen and Woods-Saxon potential. This study showed that the disorder dec reases if the temperature decreases and this decrease is more rapid for HCl and H2 molecules.
References
Greiner W., Relativistics Quantum Mechanics, Springer Berlin, Heidelberg, 2000. DOI: https://doi.org/10.1007/978-3-662-04275-5
Schrödinger E., Ann. Phys., 1926, 79, 361–376. DOI: https://doi.org/10.1002/andp.19263840404
Sun W., Liu Y., Li M., Cheng Q., Zhao L., Energy, 2023, 269, 127001. DOI: https://doi.org/10.1016/j.energy.2023.127001
Dong S. H., Cruz-Irisson M., J. Math. Chem., 2012, 50, 881. DOI: https://doi.org/10.1007/s10910-011-9931-3
Khordad R., Sedehi H. R. R., J. Low Temp. Phys., 2018, 190, 200. DOI: https://doi.org/10.1007/s10909-017-1831-x
Inyang E. P., William E. S., Omugbe E., Inyang E. P., Ibanga E. A., Ayedun F., Akpan I. O., Ntibi J. E., Rev. Mex. Fis., 2022, 68, 020401. DOI: https://doi.org/10.31349/RevMexFis.68.020401
Njoku I. J., Onyenegecha C. P., Okereke C. J., Opara A. I., Ukewuihe U. M., Nwaneho F. U., Results Phys., 2021, 24, 104208. DOI: https://doi.org/10.1016/j.rinp.2021.104208
Demirci M., Sever R., Eur. Phys. J. Plus, 2023, 138, 409. DOI: https://doi.org/10.1140/epjp/s13360-023-04030-0
Ramantswana M., Rampho G. J., Edet C. O., Ikot A. N., Okorie U. S., Qadir K.W., Abdullah H. Y., Phys. Open, 2023, 14, 100135. DOI: https://doi.org/10.1016/j.physo.2022.100135
Oluwadare O. J., Oyewumi K. J.,Abiola T. O., Indian J. Phys., 2022, 96, 1921. DOI: https://doi.org/10.1007/s12648-021-02139-5
Wang C. W., Wang J., Liu Y. S., Li J., Peng X. L., Jia C. S., Zhang L. H., Yi L. Z., Liu J. Y., Li C. J., Jia X., J. Mol. Liq., 2021, 321, 114912. DOI: https://doi.org/10.1016/j.molliq.2020.114912
Okon I. B., Omugbe E., Antia A. D., Onate C. A., Akpabio L. E., Osafile O., Sci. Rep., 2021, 11, 892. DOI: https://doi.org/10.1038/s41598-020-77756-x
Edet C. O., Okorie U. S., Osobonge G., Ikot A. N., Rampho G. J, Sever R., J. Math. Chem., 2020, 58, 989-1013. DOI: https://doi.org/10.1007/s10910-020-01107-4
Ikot A. N., Chukwuocha E. O., Onyeaju M. C., Onate C. A., Ita B. I., Udoh M. E., Pramana, 2018, 90, 22. DOI: https://doi.org/10.1007/s12043-017-1510-0
Okorie U. S., Ibekwe E. E., Ikot A. N., Onyeaju M. C., Chukwuocha E. O., J. Korean Phys. Soc., 2018, 73, 1211–1218. DOI: https://doi.org/10.3938/jkps.73.1211
OkorieU. S., Ikot A.N., Onyeaju M. C., Chukwuocha E. O., J. Mol. Model., 2018, 24, 1–12. DOI: https://doi.org/10.1007/s00894-018-3811-8
Okon I. B., Popoola O. O., Omugbe E., Antia A. D., Isonguyo C. N., Ituen E. E., Comput. Theor. Chem., 2021, 1196, 113132. DOI: https://doi.org/10.1016/j.comptc.2020.113132
Omugbe E., Osafile O. E., Okon I. B., Eur. Phys. J. Plus, 2021, 136, 740. DOI: https://doi.org/10.1140/epjp/s13360-021-01712-5
Isonguyo C. N., Okon I. B., Antia A. D., Oyewumi K. J., Omugbe E., Onate C. A., Joshua R. U., Udoh M. E., Ituen E. E., Aruajo J. P., Front. Phys., 2022, 10, 962717. DOI: https://doi.org/10.3389/fphy.2022.962717
Okon I. B., Isonguyo C. N., Onate C. A., Antia A. D., Purohit K. R., Ekott E. E., Essien K. E., William E. S., Asuquo N. E., Preprint arXiv:10.48550/arXiv.2304.08219, 2023.
Emeje K. O., Onate C. A., Okon I. B., Omugbe E., Eyube E. S., Olanrewaju D. B., Aghemenloh E., J. Low Temp. Phys., 2024, 215, 109. DOI: https://doi.org/10.1007/s10909-024-03074-5
Ikhdair S. M., Sever R., J. Mol. Struct. THEOCHEM, 2007, 809, 103. DOI: https://doi.org/10.1016/j.theochem.2007.01.019
Edet C. O., Amadi P. O., Okorie U. S., Tas A., Ikot A. N., Rampho G., Rev. Mex. Fis., 2020, 66, 824. DOI: https://doi.org/10.31349/RevMexFis.66.824
Qiang W. C., Li K., Chen W. L., J. Phys. A: Math. Theor., 2009, 42, 205306. DOI: https://doi.org/10.1088/1751-8113/42/20/205306
Eğrifes H., Demirhan D., Büyükkiliç F., Phys. Scr., 1999, 60, 195. DOI: https://doi.org/10.1238/Physica.Regular.060a00195
Okorie U. S., Ikot A. N., Edet C. O., Rampho G. J., Sever R., Akpan I. O., J. Phys. Commun., 2019, 3, 095015. DOI: https://doi.org/10.1088/2399-6528/ab42c6
Ahmadov A. I., Demirci M., Mustamin M. F., Aslanova S. M., Orujova M. Sh., Eur. Phys. J. Plus., 2021, 136, 208. DOI: https://doi.org/10.1140/epjp/s13360-021-01163-y
Abramovitz M., Stegun I. A. (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, Vol. 55, U.S. Government Printing Office, Washington, D.C., 1964.
Oyewumi K. J., Sen K. D., J. Math. Chem., 2012, 50, 1039–1059. DOI: https://doi.org/10.1007/s10910-011-9967-4
Oyewumi K. J., Oluwadare O. J., Sen K. D., Babalola O. A., J. Math. Chem., 2013, 51, 976. DOI: https://doi.org/10.1007/s10910-012-0123-6
Downloads
Published
License
Copyright (c) 2024 Y. M. Assimiou, S. T. Daniel, G. Issoufou, D. F. Anselme, G. Y. H. Avossevou
This work is licensed under a Creative Commons Attribution 4.0 International License.