Towards construction of microscopic model for smart coating of a solid surface
DOI:
https://doi.org/10.5488/cmp.28.23604Keywords:
density functional theory, water model, density profiles, adsorption, wetting temperatureAbstract
The density functional approach for classical associating fluids is used to explore the wetting phase diagrams for model systems consisting of water and graphite-like solid surfaces chemically modified by a small amount of grafted chain molecules. The water-like fluid model is adopted from the work of Clark et al. [Mol. Phys., 104, 3561 (2006)]. It very well describes the bulk water vapor-liquid coexistence. Each chain molecule consists of tangentially bonded hard sphere segments. We focus on the investigation of the growth of water film on such complex substrates and exploration of the wetting behavior. For grafted monomers, the prewetting phase diagrams are similar to the diagrams for water on a non-modified solid surface. However, for grafted trimers and pentamers, a physically much richer behavior is observed and analyzed. Trends of the behavior of the wetting temperature and the prewetting critical temperature on the grafting density and water-segments attraction are discussed in detail.
References
Yukhnovskii I. R., Rakhimova I. S., Vladimirov V. V., Ukr. Fiz. Zh., 1959, 4, 334, (in Ukrainian).
Percus J. K., Yevick G. J., Phys. Rev., 1957, 110, 1. DOI: https://doi.org/10.1103/PhysRev.110.1
Henderson D., Abraham F. F., Barker J. A., Mol. Phys., 1976, 31, 1291. DOI: https://doi.org/10.1080/00268977600101021
Blum L., J. Phys. Chem., 1977, 81, 136. DOI: https://doi.org/10.1021/j100517a009
Henderson D., Blum L., J. Chem. Phys., 1978, 69, 5441. DOI: https://doi.org/10.1063/1.436535
Yukhnovskii I. R., Kuryliak I. I., Ukr. Fiz. Zh., 1976, 21, 1772, (in Ukrainian).
Kurylyak I. I., Yukhnovskii I. R., Theor. Math. Phys., 1982, 52, No. 1, 691–699. DOI: https://doi.org/10.1007/BF01027790
Yukhnovskii I. R., Holovko M. F., Kuryliak I. I., Soviak E. M. In: Fizika molekul, Vol. 10, Naukova dumka, Kiev, 1981, 26–43, (in Russian).
Yukhnovskii I. R., Holovko M. F., Soviak E. N., Preprint of Inst. Theor. Phys. Ukr. Acad. Sci., ITP-82-159R, Kiev, 1982, (in Russian).
Golovko M. F., Blotsky S. N., Pizio O., Electrochim. Acta, 1989, 34, 63. DOI: https://doi.org/10.1016/0013-4686(89)80010-6
Yukhnovskyi I. R., Holovko M. F., Statistical Theory of Classical Equilibrium Systems, Naukova dumka, Kyiv, 1980, (in Russian).
Golovko M. F., Yukhnovskii I. R., Approaches to the Many-Body Theory of Dense Ion-Dipole Plasma. Application to Ionic Solvation. In: The Chemical Physics of Solvation, Vol. A. Elsevier, Amsterdam, 1985, 207–262.
Holovko M. F., Kuryliak I. I., Pizio O. A., Sovjak E. N., In: Problems of Contemporary Statistical Physics, N. N. Bogololiubov (Ed.), Naukova Dumka Publishers, Kyiv, 1985, 82–96, (in Russian).
Holovko M. F., Vakarin E. V., Mol. Phys., 1995, 84, 1057. DOI: https://doi.org/10.1080/00268979500100741
Holovko M. F., Vakarin E. V., Duda Yu. Ya., Chem. Phys. Lett., 1995, 233, 420. DOI: https://doi.org/10.1016/0009-2614(94)01480-J
Pizio O., Henderson D., Sokolowski S., J. Phys. Chem., 1995, 99, 2408. DOI: https://doi.org/10.1021/j100008a025
Patrykiejew A., Sokolowski S., Pizio O., In: Surface and Interface Science, Wandelt K. (Ed.), Wiley, 2016, 883–1253. DOI: https://doi.org/10.1002/9783527680580.ch46
Patsahan O. V., Mryglod I. M., Condens. Matter Phys., 2012, 15, 24001. DOI: https://doi.org/10.5488/CMP.15.24001
Huerta A., Pizio O., Bryk P., Sokolowski S., Mol. Phys., 2000, 98, 1851. DOI: https://doi.org/10.1080/00268970009483390
Millan Malo B., Pizio O., Patrykiejew A., Sokolowski S., J. Phys.: Condens. Matter, 2001, 13, 1361. DOI: https://doi.org/10.1088/0953-8984/13/7/303
Millan Malo B., Salazar L., Sokolowski S., Pizio O., J. Phys.: Condens. Matter, 2000, 12, 8785. DOI: https://doi.org/10.1088/0953-8984/12/41/304
Patrykiejew A., Sokolowski S., Sokolowska Z., Pizio O. J. Phys.: Condens. Matter, 2001, 13, 6151.. DOI: https://doi.org/10.1088/0953-8984/13/28/301
Clark G. N., Haslam A. J., Galindo A., Jackson G., Mol. Phys., 2006, 104, 3561. DOI: https://doi.org/10.1080/00268970601081475
Trejos V. M., Pizio O., Sokolowski S., Fluid Phase Equilib., 2018, 473, 145. DOI: https://doi.org/10.1016/j.fluid.2018.06.005
Trejos V. M., Pizio O., Sokolowski S., J. Chem. Phys., 2018, 149, 134701.
Pizio O., Sokolowski S., Mol. Phys., 2022, 120, e2011454.
Pizio O., Sokolowski S., J. Mol. Liq., 2022, 357, 119111. DOI: https://doi.org/10.1016/j.molliq.2022.119111
Pizio O., Sokolowski S., J. Mol. Liq., 2023, 390, 123009. DOI: https://doi.org/10.1016/j.molliq.2023.123009
Dabrowska K., Pizio O., Sokolowski S., Condens. Matter Phys., 2022, 25, 33603. DOI: https://doi.org/10.5488/CMP.25.33603
Pizio O., Patrykiejew A., Vega C., Pusztai L., Ilnytskyi J., Patsahan T., Trokhymchuk A., Condens. Matter Phys., 2024, 27, 37001. DOI: https://doi.org/10.5488/cmp.27.37001
Brittain W. J., Minko S., J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 3505. DOI: https://doi.org/10.1002/pola.22180
Stockhausen V., Trippé-Allard G., Van Quynh N., Ghilane J., Lacroix J.-C., J. Phys. Chem. C, 2015, 119, 19218. DOI: https://doi.org/10.1021/acs.jpcc.5b05456
Gutiérrez Moreno J. J., Pan K., Wang Y., Li W., Langmuir, 2020, 36, 5680. DOI: https://doi.org/10.1021/acs.langmuir.9b03755
Obeso J. L., Lopez Cervantes V. B., Flores C. V., Garcia-Carvajal C., Garduño-Albino C. E., Peralta R. A., Trejos V. M., Arcos L.H., Ibarra I. A., Solis-Ibarra D., Cordero-Sánchez S., Portillo-Vélez N. S., Esparza-Schulz J. M., Dalton Trans., 2024, 53, 12208. DOI: https://doi.org/10.1039/D4DT01283F
Halperin A., de Gennes P. G., J. Phys. (Paris), 1986, 47, 1243. DOI: https://doi.org/10.1051/jphys:019860047070124300
Bryuzgin E. V., Hyakutake T., Navrotskiy A. V., Nishide H., Novakov I. A., Prot. Met. Phys. Chem. Surf., 2013, 49, 101. DOI: https://doi.org/10.1134/S207020511301005X
Long D., Ajdari A., Leibler L., Langmuir, 1996, 12, 1675. DOI: https://doi.org/10.1021/la950701n
Rutledge J. E., Taborek P., Phys. Rev. Lett., 1992, 69, 937. DOI: https://doi.org/10.1103/PhysRevLett.69.937
Xu X., Cao D., J. Chem. Phys., 2009, 130, 164901. DOI: https://doi.org/10.1063/1.3119311
Haghmoradi A., Wang L., Chapman W. G., J. Phys.: Condens. Matter, 2017, 29, 044002. DOI: https://doi.org/10.1088/1361-648X/29/4/044002
Bryk P., MacDowell L. G., J. Chem. Phys., 2011, 135, 204901. DOI: https://doi.org/10.1063/1.3662139
Chen C., Tang P., Qiu F., Shi A.-C., J. Chem. Phys., 2011, 135, 204901.
Jain S., Jog P., Weinhold J., Srivastava R., Chapman W. G., J. Chem. Phys., 2008, 128, 154910. DOI: https://doi.org/10.1063/1.2902976
Li C., Zhang T., Yang Y., Tang P., ACS Omega, 2019, 4, 12927. DOI: https://doi.org/10.1021/acsomega.9b01800
Yu Y.-X., Wu J., J. Chem. Phys., 2002, 117, 2368. DOI: https://doi.org/10.1063/1.1491240
Patrykiejew A., Sokolowski S., Tscheliessnig R., Fischer J., Pizio O., J. Phys. Chem. B, 2008, 112, 4552. DOI: https://doi.org/10.1021/jp710978t
Kozina A., Aguilar A., Pizio O., Sokolowski S., Condens. Matter Phys., 2024, 27, 13604. DOI: https://doi.org/10.5488/cmp.27.13604
Trejos V. M., Pizio O., Sokolowski S., J. Chem. Phys., 2018, 149, 234703. DOI: https://doi.org/10.1063/1.5066552
Trejos V. M., Pizio O., Sokolowski S., J. Chem. Phys., 2019, 151, 064704. DOI: https://doi.org/10.1063/1.5116128
Müller E. A., Gubbins K. E., Ind. Eng. Chem. Res., 2011, 40, 2193. DOI: https://doi.org/10.1021/ie000773w
Steele W. A., The Interaction of Gases with Solid Surfaces, Pergamon Press, Oxford, 1974.
Friedman S. R., Khalil M., Taborek P., Phys. Rev. Lett., 2013, 111, 226101. DOI: https://doi.org/10.1103/PhysRevLett.111.226101
Gatica S. M., Johnson J. K., Zhao X. C., Cole M. W., J. Phys. Chem. B, 2004, 108, 11704. DOI: https://doi.org/10.1021/jp048509u
Dutta R. C., Khan S., Singh V., Fluid Phase Equilib., 2011, 302, 310. DOI: https://doi.org/10.1016/j.fluid.2010.07.006
Fletcher D. A., McMeeking R. F., Parkin D., J. Chem. Inf. Comput. Sci., 1996, 36, No. 4, 746–749. DOI: https://doi.org/10.1021/ci960015+
Zhao X., Phys. Rev. B, 2007, 76, 041402(R). DOI: https://doi.org/10.1103/PhysRevB.76.041402
Pizio O., Pusztai L., Sokolowska Z., Sokolowski S., J. Chem. Phys., 2009, 130, 134501.
Sokolowski S., Ilnytskyi J., Pizio O., Condens. Matter Phys., 2014, 17, 12601. DOI: https://doi.org/10.5488/CMP.17.12601
Jackson G., Chapman W. G., Gubbins K. E., Mol. Phys., 1988, 65, 1. DOI: https://doi.org/10.1080/00268978800100821
Chapman W. G., Jackson G., Gubbins K. E., Mol. Phys., 1988, 65, 1057. DOI: https://doi.org/10.1080/00268978800101601
Yu Y.-X., Wu J., J. Chem. Phys., 2002, 117, 10156. DOI: https://doi.org/10.1063/1.1520530
Kreer T., Metzger S., Müller M., Binder K., Baschnagel J., J. Chem. Phys., 2004, 120, 4012. DOI: https://doi.org/10.1063/1.1642615
Dimitrov D., Milchev A., Binder K., Macromol. Symp., 2007, 252, 47. DOI: https://doi.org/10.1002/masy.200750605
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 O. Pizio

This work is licensed under a Creative Commons Attribution 4.0 International License.