Towards construction of microscopic model for smart coating of a solid surface

Authors

DOI:

https://doi.org/10.5488/cmp.28.23604

Keywords:

density functional theory, water model, density profiles, adsorption, wetting temperature

Abstract

 The density functional approach for classical associating fluids is used to explore the wetting phase diagrams for model systems consisting of water and graphite-like solid surfaces chemically modified by a small amount of grafted chain molecules. The water-like fluid model is adopted from the work of Clark et al. [Mol. Phys., 104, 3561 (2006)]. It very well describes the bulk water vapor-liquid coexistence. Each chain molecule consists of tangentially bonded hard sphere segments. We focus on the investigation of the growth of water film on such complex substrates and exploration of the wetting behavior. For grafted monomers, the prewetting phase diagrams are similar to the diagrams for water on a non-modified solid surface. However, for grafted trimers and pentamers, a physically much richer behavior is observed and analyzed. Trends of the behavior of the wetting temperature and the prewetting critical temperature on the grafting density and water-segments attraction are discussed in detail.

References

Yukhnovskii I. R., Rakhimova I. S., Vladimirov V. V., Ukr. Fiz. Zh., 1959, 4, 334, (in Ukrainian).

Percus J. K., Yevick G. J., Phys. Rev., 1957, 110, 1. DOI: https://doi.org/10.1103/PhysRev.110.1

Henderson D., Abraham F. F., Barker J. A., Mol. Phys., 1976, 31, 1291. DOI: https://doi.org/10.1080/00268977600101021

Blum L., J. Phys. Chem., 1977, 81, 136. DOI: https://doi.org/10.1021/j100517a009

Henderson D., Blum L., J. Chem. Phys., 1978, 69, 5441. DOI: https://doi.org/10.1063/1.436535

Yukhnovskii I. R., Kuryliak I. I., Ukr. Fiz. Zh., 1976, 21, 1772, (in Ukrainian).

Kurylyak I. I., Yukhnovskii I. R., Theor. Math. Phys., 1982, 52, No. 1, 691–699. DOI: https://doi.org/10.1007/BF01027790

Yukhnovskii I. R., Holovko M. F., Kuryliak I. I., Soviak E. M. In: Fizika molekul, Vol. 10, Naukova dumka, Kiev, 1981, 26–43, (in Russian).

Yukhnovskii I. R., Holovko M. F., Soviak E. N., Preprint of Inst. Theor. Phys. Ukr. Acad. Sci., ITP-82-159R, Kiev, 1982, (in Russian).

Golovko M. F., Blotsky S. N., Pizio O., Electrochim. Acta, 1989, 34, 63. DOI: https://doi.org/10.1016/0013-4686(89)80010-6

Yukhnovskyi I. R., Holovko M. F., Statistical Theory of Classical Equilibrium Systems, Naukova dumka, Kyiv, 1980, (in Russian).

Golovko M. F., Yukhnovskii I. R., Approaches to the Many-Body Theory of Dense Ion-Dipole Plasma. Application to Ionic Solvation. In: The Chemical Physics of Solvation, Vol. A. Elsevier, Amsterdam, 1985, 207–262.

Holovko M. F., Kuryliak I. I., Pizio O. A., Sovjak E. N., In: Problems of Contemporary Statistical Physics, N. N. Bogololiubov (Ed.), Naukova Dumka Publishers, Kyiv, 1985, 82–96, (in Russian).

Holovko M. F., Vakarin E. V., Mol. Phys., 1995, 84, 1057. DOI: https://doi.org/10.1080/00268979500100741

Holovko M. F., Vakarin E. V., Duda Yu. Ya., Chem. Phys. Lett., 1995, 233, 420. DOI: https://doi.org/10.1016/0009-2614(94)01480-J

Pizio O., Henderson D., Sokolowski S., J. Phys. Chem., 1995, 99, 2408. DOI: https://doi.org/10.1021/j100008a025

Patrykiejew A., Sokolowski S., Pizio O., In: Surface and Interface Science, Wandelt K. (Ed.), Wiley, 2016, 883–1253. DOI: https://doi.org/10.1002/9783527680580.ch46

Patsahan O. V., Mryglod I. M., Condens. Matter Phys., 2012, 15, 24001. DOI: https://doi.org/10.5488/CMP.15.24001

Huerta A., Pizio O., Bryk P., Sokolowski S., Mol. Phys., 2000, 98, 1851. DOI: https://doi.org/10.1080/00268970009483390

Millan Malo B., Pizio O., Patrykiejew A., Sokolowski S., J. Phys.: Condens. Matter, 2001, 13, 1361. DOI: https://doi.org/10.1088/0953-8984/13/7/303

Millan Malo B., Salazar L., Sokolowski S., Pizio O., J. Phys.: Condens. Matter, 2000, 12, 8785. DOI: https://doi.org/10.1088/0953-8984/12/41/304

Patrykiejew A., Sokolowski S., Sokolowska Z., Pizio O. J. Phys.: Condens. Matter, 2001, 13, 6151.. DOI: https://doi.org/10.1088/0953-8984/13/28/301

Clark G. N., Haslam A. J., Galindo A., Jackson G., Mol. Phys., 2006, 104, 3561. DOI: https://doi.org/10.1080/00268970601081475

Trejos V. M., Pizio O., Sokolowski S., Fluid Phase Equilib., 2018, 473, 145. DOI: https://doi.org/10.1016/j.fluid.2018.06.005

Trejos V. M., Pizio O., Sokolowski S., J. Chem. Phys., 2018, 149, 134701.

Pizio O., Sokolowski S., Mol. Phys., 2022, 120, e2011454.

Pizio O., Sokolowski S., J. Mol. Liq., 2022, 357, 119111. DOI: https://doi.org/10.1016/j.molliq.2022.119111

Pizio O., Sokolowski S., J. Mol. Liq., 2023, 390, 123009. DOI: https://doi.org/10.1016/j.molliq.2023.123009

Dabrowska K., Pizio O., Sokolowski S., Condens. Matter Phys., 2022, 25, 33603. DOI: https://doi.org/10.5488/CMP.25.33603

Pizio O., Patrykiejew A., Vega C., Pusztai L., Ilnytskyi J., Patsahan T., Trokhymchuk A., Condens. Matter Phys., 2024, 27, 37001. DOI: https://doi.org/10.5488/cmp.27.37001

Brittain W. J., Minko S., J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 3505. DOI: https://doi.org/10.1002/pola.22180

Stockhausen V., Trippé-Allard G., Van Quynh N., Ghilane J., Lacroix J.-C., J. Phys. Chem. C, 2015, 119, 19218. DOI: https://doi.org/10.1021/acs.jpcc.5b05456

Gutiérrez Moreno J. J., Pan K., Wang Y., Li W., Langmuir, 2020, 36, 5680. DOI: https://doi.org/10.1021/acs.langmuir.9b03755

Obeso J. L., Lopez Cervantes V. B., Flores C. V., Garcia-Carvajal C., Garduño-Albino C. E., Peralta R. A., Trejos V. M., Arcos L.H., Ibarra I. A., Solis-Ibarra D., Cordero-Sánchez S., Portillo-Vélez N. S., Esparza-Schulz J. M., Dalton Trans., 2024, 53, 12208. DOI: https://doi.org/10.1039/D4DT01283F

Halperin A., de Gennes P. G., J. Phys. (Paris), 1986, 47, 1243. DOI: https://doi.org/10.1051/jphys:019860047070124300

Bryuzgin E. V., Hyakutake T., Navrotskiy A. V., Nishide H., Novakov I. A., Prot. Met. Phys. Chem. Surf., 2013, 49, 101. DOI: https://doi.org/10.1134/S207020511301005X

Long D., Ajdari A., Leibler L., Langmuir, 1996, 12, 1675. DOI: https://doi.org/10.1021/la950701n

Rutledge J. E., Taborek P., Phys. Rev. Lett., 1992, 69, 937. DOI: https://doi.org/10.1103/PhysRevLett.69.937

Xu X., Cao D., J. Chem. Phys., 2009, 130, 164901. DOI: https://doi.org/10.1063/1.3119311

Haghmoradi A., Wang L., Chapman W. G., J. Phys.: Condens. Matter, 2017, 29, 044002. DOI: https://doi.org/10.1088/1361-648X/29/4/044002

Bryk P., MacDowell L. G., J. Chem. Phys., 2011, 135, 204901. DOI: https://doi.org/10.1063/1.3662139

Chen C., Tang P., Qiu F., Shi A.-C., J. Chem. Phys., 2011, 135, 204901.

Jain S., Jog P., Weinhold J., Srivastava R., Chapman W. G., J. Chem. Phys., 2008, 128, 154910. DOI: https://doi.org/10.1063/1.2902976

Li C., Zhang T., Yang Y., Tang P., ACS Omega, 2019, 4, 12927. DOI: https://doi.org/10.1021/acsomega.9b01800

Yu Y.-X., Wu J., J. Chem. Phys., 2002, 117, 2368. DOI: https://doi.org/10.1063/1.1491240

Patrykiejew A., Sokolowski S., Tscheliessnig R., Fischer J., Pizio O., J. Phys. Chem. B, 2008, 112, 4552. DOI: https://doi.org/10.1021/jp710978t

Kozina A., Aguilar A., Pizio O., Sokolowski S., Condens. Matter Phys., 2024, 27, 13604. DOI: https://doi.org/10.5488/cmp.27.13604

Trejos V. M., Pizio O., Sokolowski S., J. Chem. Phys., 2018, 149, 234703. DOI: https://doi.org/10.1063/1.5066552

Trejos V. M., Pizio O., Sokolowski S., J. Chem. Phys., 2019, 151, 064704. DOI: https://doi.org/10.1063/1.5116128

Müller E. A., Gubbins K. E., Ind. Eng. Chem. Res., 2011, 40, 2193. DOI: https://doi.org/10.1021/ie000773w

Steele W. A., The Interaction of Gases with Solid Surfaces, Pergamon Press, Oxford, 1974.

Friedman S. R., Khalil M., Taborek P., Phys. Rev. Lett., 2013, 111, 226101. DOI: https://doi.org/10.1103/PhysRevLett.111.226101

Gatica S. M., Johnson J. K., Zhao X. C., Cole M. W., J. Phys. Chem. B, 2004, 108, 11704. DOI: https://doi.org/10.1021/jp048509u

Dutta R. C., Khan S., Singh V., Fluid Phase Equilib., 2011, 302, 310. DOI: https://doi.org/10.1016/j.fluid.2010.07.006

Fletcher D. A., McMeeking R. F., Parkin D., J. Chem. Inf. Comput. Sci., 1996, 36, No. 4, 746–749. DOI: https://doi.org/10.1021/ci960015+

Zhao X., Phys. Rev. B, 2007, 76, 041402(R). DOI: https://doi.org/10.1103/PhysRevB.76.041402

Pizio O., Pusztai L., Sokolowska Z., Sokolowski S., J. Chem. Phys., 2009, 130, 134501.

Sokolowski S., Ilnytskyi J., Pizio O., Condens. Matter Phys., 2014, 17, 12601. DOI: https://doi.org/10.5488/CMP.17.12601

Jackson G., Chapman W. G., Gubbins K. E., Mol. Phys., 1988, 65, 1. DOI: https://doi.org/10.1080/00268978800100821

Chapman W. G., Jackson G., Gubbins K. E., Mol. Phys., 1988, 65, 1057. DOI: https://doi.org/10.1080/00268978800101601

Yu Y.-X., Wu J., J. Chem. Phys., 2002, 117, 10156. DOI: https://doi.org/10.1063/1.1520530

Kreer T., Metzger S., Müller M., Binder K., Baschnagel J., J. Chem. Phys., 2004, 120, 4012. DOI: https://doi.org/10.1063/1.1642615

Dimitrov D., Milchev A., Binder K., Macromol. Symp., 2007, 252, 47. DOI: https://doi.org/10.1002/masy.200750605

Published

2025-06-25

How to Cite

[1]
O. Pizio, “Towards construction of microscopic model for smart coating of a solid surface”, Condens. Matter Phys., vol. 28, no. 2, p. 23604, Jun. 2025, doi: 10.5488/cmp.28.23604.

Similar Articles

1-10 of 63

You may also start an advanced similarity search for this article.