Effect of arsenic doping on structural and electronic properties of MoSe2 monolayer: an ab initio study

Authors

  • B. Bradji Laboratory of Theoretical and Applied Physics (LPAT), Echahid Cheick Larbi Tebessi University, 12000 Tebessa, Algeria
  • M. L. Benkhedir Laboratory of Theoretical and Applied Physics (LPAT), Echahid Cheick Larbi Tebessi University, 12000 Tebessa, Algeria https://orcid.org/0000-0001-8375-0998

DOI:

https://doi.org/10.5488/cmp.27.43602

Keywords:

transient metal dichalcogenides, density functional theory, electronic structure, doping

Abstract

In this paper, we studied the structural and electronic properties of MoSe2 monolayer in its pure and doped forms, using the density functional theory (DFT), and the calculations were performed using Quantum Espresso (QE) software package. The doped systems are a MoSe2 monolayer with a vacancy in Mo site (Mo vacancy system), the MoSe2 monolayer with an As atom as substitutional for Mo atom (As(Mo) doped system) and an MoSe2 monolayer with As atom in an interstitial site in the hollow location of the center of one ring of the structure between the plane Mo atoms and the plane containing Se atoms (As interstitial system). We calculated the formation energy of various structures studied in Se-rich condition. We found that the As(Mo) doped system is a favorable configuration, whereas the As interstitial system is metastable. Different defects introduce midgap levels, which were interpreted according to the orbitals involved in their formation using the analysis of the band structure and DOS and PDOS of each system. The energy gap increases in all system structures and its value ranged between 1.5 eV and 1.73 eV, the Fermi level shifts toward the valence band for the Mo vacancy system, and As(Mo) doped system which suggests that it can be a p-type semiconductor, whereas Fermi level shifts to the conduction band for As interstitial system and suggests a n-type semiconductor behavior. The obtained results enable us to predict the possibility of using these systems in many applications, since it can be used in the As(Mo) doped system in photocatalysis or in photovoltaic applications in the visible light, and As interstitial system can be used in electronics applications in the infrared field.

References

Neto A. C., Guinea F., Peres N. M., Novoselov K. S., Geim A. K., Rev. Mod. Phys., 2009, 81, No. 1, 109. DOI: https://doi.org/10.1103/RevModPhys.81.109

Haldar S., Vovusha H., Yadav M. K., Eriksson O., Sanyal B., Phys. Rev. B, 2015, 92, No. 23, 235408.

Paul J., Singh A., Dong Z., Zhuang H., Revard B., Rijal B., Ashton M., Linscheid A., Blonsky M., Gluhovic D., J. Phys.: Condens. Matter, 2017, 29, No. 47, 473001. DOI: https://doi.org/10.1088/1361-648X/aa9305

Bolotin K. I., Sikes K. J., Hone J., Stormer H., Kim P., Phys. Rev. Lett., 2008, 101, No. 9, 096802. DOI: https://doi.org/10.1103/PhysRevLett.101.096802

Luo Y., Liu Q., Yang L., Yan Y., Quim. Nova, 2022, 45, 654–658.

MaJ.-J., Zheng J.-J., LiW.-D.,Wang D.-H.,Wang B.-T., Phys. Chem. Chem. Phys., 2020, 22,No. 10, 5832–5838. DOI: https://doi.org/10.1039/D0CP00047G

Menezes M. G., Ullah S., Phys. Rev. B, 2021, 104, No. 12, 125438. DOI: https://doi.org/10.1103/PhysRevE.104.054201

Nair R. R., Blake P., Grigorenko A. N., Novoselov K. S., Booth T. J., Stauber T., Peres N. M., Geim A. K., Science, 2008, 320, No. 5881, 1308–1308. DOI: https://doi.org/10.1126/science.1156965

Koós A. A., Vancsó P., Szendro M., Dobrik G., Antognini Silva D., Popov Z. I., Sorokin P. B., Henrard L., Hwang C., Biró L. P., Tapasztó L., J. Phys. Chem. C, 2019, 123, No. 40, 24855–24864. DOI: https://doi.org/10.1021/acs.jpcc.9b05921

Gao D., Xia B., Wang Y., Xiao W., Xi P., Xue D., Ding J., Small, 2018, 14, No. 14, 1704150. DOI: https://doi.org/10.1002/smll.201704150

Kolobov A. V., Tominaga J., From 3D to 2D: Fabrication Methods, Springer International Publishing, Cham, 2016, 79–107. DOI: https://doi.org/10.1007/978-3-319-31450-1_4

Zhang K., Robinson J., MRS Adv., 2019, 4, No. 51–52, 2743–2757. DOI: https://doi.org/10.1557/adv.2019.391

Ayesh A. I., Phys. Lett. A, 2022, 422, 127798. DOI: https://doi.org/10.1016/j.physleta.2021.127798

Khan Z. H., Emerging trends in nanotechnology, Springer, 2021. DOI: https://doi.org/10.1007/978-981-15-9904-0

Liang B., Li W., Ren Q., Zhu C., Li J., Results Phys., 2022, 42, 105978. DOI: https://doi.org/10.1016/j.rinp.2022.105978

Zhang D., Li Q., Li P., Pang M., Luo Y., IEEE Electron Device Lett., 2019, 40, No. 4, 616–619. DOI: https://doi.org/10.1109/LED.2019.2901296

Yang J., Zhu J., Xu J., Zhang C., Liu T., ACS Appl. Mater. Interfaces, 2017, 9, No. 51, 44550–44559. DOI: https://doi.org/10.1021/acsami.7b15854

He J., Liu G., Zhang C., Wang Y., Zhang G., Micro Nanostruct., 2023, 180, 207612. DOI: https://doi.org/10.1016/j.micrna.2023.207612

Zhao Y., Wang W., Li C., He L., Sci. Rep., 2017, 7, No. 1, 17088. DOI: https://doi.org/10.1038/s41598-017-16157-z

Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D., Chiarotti G. L., Cococcioni M., Dabo I., et al., J. Phys.: Condens. Matter, 2009, 21, No. 39, 395502. DOI: https://doi.org/10.1088/0953-8984/21/39/395502

Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865–3868. DOI: https://doi.org/10.1103/PhysRevLett.77.3865

Monkhorst H. J., Pack J. D., Phys. Rev. B, 1976, 13, 5188–5192. DOI: https://doi.org/10.1103/PhysRevB.13.5188

Murnaghan F. D., PNAS, 1944, 30, No. 9, 244–247. DOI: https://doi.org/10.1073/pnas.30.9.244

Prucnal S., Hashemi A., Ghorbani-Asl M., Hübner R., Duan J., Wei Y., Sharma D., Zahn D. R., Ziegenrücker R., Kentsch U., Krasheninnikov A. V., Helm M., Zhou S., Nanoscale, 2021, 13, No. 11, 5834–5846. DOI: https://doi.org/10.1039/D0NR08935D

Vinturaj V., Yadav A. K., Jasil T., Kiran G., Singh R., Singh A. K., Garg V., Pandey S. K., Bull. Mater. Sci., 2023, 46, No. 3, 121. DOI: https://doi.org/10.1007/s12034-023-02963-x

Kumar A., Ahluwalia P., Eur. Phys. J. B, 2012, 85, 1–7. DOI: https://doi.org/10.1140/epjb/e2012-30070-x

Ramasubramaniam A., Phys. Rev. B, 2012, 86, 115409. DOI: https://doi.org/10.1103/PhysRevB.86.115409

Zhang Y., Chang T.-R., Zhou B., Cui Y.-T., Yan H., Liu Z., Schmitt F., Lee J., Moore R., Chen Y., Lin H., Jeng H.-T., Mo S.-K., Hussain Z., Bansil A., Shen Z.-X., Nat. Nanotechnol., 2014, 9, No. 2, 111–115. DOI: https://doi.org/10.1038/nnano.2013.277

Zhao Y., Ren Y., Coileain C. O., Li J., Zhang D., Arora S. K., Jiang Z., Wu H.-C., Appl. Surf. Sci., 2021, 564, 150399. DOI: https://doi.org/10.1016/j.apsusc.2021.150399

Zhong M., Shen C., Huang L., Deng H.-X., Shen G., Zheng H., Wei Z., Li J., npj 2D Mater. Appl., 2019, 3, No. 1, 1. DOI: https://doi.org/10.1038/s41699-018-0083-1

Balasubramaniam B., Singh N., Kar P., Tyagi A., Prakash J., Gupta R. K., Mol. Syst. Des. Eng., 2019, 4, 804–827. DOI: https://doi.org/10.1039/C8ME00116B

Published

2024-12-30

How to Cite

[1]
B. Bradji and M. L. Benkhedir, “Effect of arsenic doping on structural and electronic properties of MoSe2 monolayer: an ab initio study”, Condens. Matter Phys., vol. 27, no. 4, p. 43602, Dec. 2024, doi: 10.5488/cmp.27.43602.

Similar Articles

31-40 of 41

You may also start an advanced similarity search for this article.