Advances of Mayer's cluster approach in quantitative theoretical description of phase transitions for various lattice models of matter

Authors

DOI:

https://doi.org/10.5488/cmp.28.13501

Keywords:

lattice model, Mayer's expansion, cluster integral, condensation, magnetization, spinodal decomposition

Abstract

Resent achievements in Statistical Theory, namely, a possibility to reproduce almost unlimited Mayer's activity series based on the information about their convergence radius, on the one hand, and generalization of the Lattice Statistics by eliminating the simplification of nearest-neighbor interactions, on the other hand, have allowed accurate quantitative description of the condensation in lattice gases, spontaneous magnetization in ferromagnets, and spinodal decomposition in binary mixtures by evaluating only a several irreducible cluster integrals (virial coefficients). In particular, the results of calculations indicate qualitative and even quantitative universality in the behavior of the mentioned lattice systems of different geometry and dimensionality at the same values of a certain reduced temperature when that behavior is expressed in terms of some dimensionless parameters. An additional possibility to describe the order-disorder phase transitions in some other lattice systems (e.g., antiferromagnets and alloys) is also discussed in the paper.

References

Kac M., Uhlenbeck G. E., Hemmer P. C., J. Math. Phys., 1963, 4, No. 2, 216–228. DOI: https://doi.org/10.1063/1.1703946

Lebowitz J. L., Penrose O., J. Math. Phys., 1966, 7, No. 1, 98–113. DOI: https://doi.org/10.1063/1.1704821

Lee T. D., Yang C. N., Phys. Rev., 1952, 87, 410–419. DOI: https://doi.org/10.1103/PhysRev.87.410

Mayer J. E., Mayer M. G., Statistical Mechanics, John Wiley, New York, 2nd edn., 1977.

Ushcats M. V., Bulavin L. A., Sysoev V. M., Bardik V. Y., Alekseev A. N., J. Mol. Liq., 2016, 224, 694–712. DOI: https://doi.org/10.1016/j.molliq.2016.09.100

Ushcats M. V., Phys. Rev. Lett., 2012, 109, 040601. DOI: https://doi.org/10.1103/PhysRevLett.109.040601

Bannur V. M., Physica A, 2015, 419, 675–680. DOI: https://doi.org/10.1016/j.physa.2014.10.053

Ushcats M. V., Ushcats S. Y., Bulavin L. A., Sysoev V. M., Phys. Rev. E, 2018, 98, 032135. DOI: https://doi.org/10.1103/PhysRevE.98.032135

Lebowitz J. L., Penrose O., J. Math. Phys., 1964, 5, No. 7, 841–847. DOI: https://doi.org/10.1063/1.1704186

Ushcats M. V., Bulavin L. A., Sysoev V. M., Ushcats S. Y., Phys. Rev. E, 2017, 96, 062115. DOI: https://doi.org/10.1103/PhysRevE.96.062115

Ushcats M. V., Bulavin L. A., Ushcats S. Y., Phys. Rev. E, 2018, 98, 042127. DOI: https://doi.org/10.1103/PhysRevE.98.042127

Ushcats M. V., Phys. Rev. E, 2013, 87, 042111. DOI: https://doi.org/10.1103/PhysRevE.87.042111

Ushcats M. V., Bulavin L. A., Sysoev V. M., Ushcats S. Y., Ukr. J. Phys., 2017, 62, No. 6, 533–538. DOI: https://doi.org/10.15407/ujpe62.06.0533

Ushcats M. V., J. Chem. Phys., 2013, 138, No. 9, 094309. DOI: https://doi.org/10.1063/1.4793407

Suresh T. P., Udayanandan K. M., Turk. J. Phys., 2018, 42, No. 6, 668–674. DOI: https://doi.org/10.3906/fiz-1806-19

Suresh T. P., Udayanandan K. M., Pramana, 2020, 94, No. 1, 26. DOI: https://doi.org/10.1007/s12043-019-1908-y

Ushcats M. V., Bulavin L. A., Phys. Rev. E, 2020, 101, 062128. DOI: https://doi.org/10.1103/PhysRevE.101.062128

Ushcats S., Ushcats M., Bulavin L., Svechnikova O., Mykheliev I., Pramana, 2018, 91, No. 3, 31. DOI: https://doi.org/10.1007/s12043-018-1604-3

Ising E., Z. Phys., 1925, 31, 253–258. DOI: https://doi.org/10.1007/BF02980577

Hill T. L., Statistical Mechanics: Principles and Selected Applications, McGraw-Hill, New York, 1956.

Ushcats M. V., Phys. Rev. E, 2015, 91, 052144. DOI: https://doi.org/10.1103/PhysRevE.91.052144

Ushcats M. V., Bulavin L. A., Sysoev V. M., Ushcats S. J., Phys. Rev. E, 2016, 94, 012143. DOI: https://doi.org/10.1103/PhysRevE.94.012143

Ushcats S., Ushcats M., Sysoev V., Gavryushenko D., Ukr. J. Phys., 2018, 63, No. 12, 1066. DOI: https://doi.org/10.15407/ujpe63.12.1066

Ushcats M., Bulavin L., Ushcats S., Lazarenko M., Labartkava A., Physica A, 2022, 598, 127307. DOI: https://doi.org/10.1016/j.physa.2022.127307

Ushcats M., Ushcats S., Kondratieva A., Koval S., Physica A, 2024, 649, 129957. DOI: https://doi.org/10.1016/j.physa.2024.129957

Singh J. K., Kofke D. A., Phys. Rev. Lett., 2004, 92, 220601. DOI: https://doi.org/10.1103/PhysRevLett.92.220601

Ushcats M. V., Ukr. J. Phys., 2014, 59, No. 2, 172–178. DOI: https://doi.org/10.15407/ujpe59.02.0172

Ushcats M. V., Ukr. J. Phys., 2014, 59, No. 7, 737–742. DOI: https://doi.org/10.15407/ujpe59.07.0737

Ushcats M. V., J. Chem. Phys., 2014, 140, No. 23, 234309. DOI: https://doi.org/10.1063/1.4882896

Ushcats M. V., Ushcats S. J., Mochalov A. A., Ukr. J. Phys., 2016, 61, No. 2, 160–167. DOI: https://doi.org/10.15407/ujpe61.02.0160

Wheatley R. J., Phys. Rev. Lett., 2013, 110, 200601. DOI: https://doi.org/10.1103/PhysRevLett.110.200601

Feng C., Schultz A. J., Chaudhary V., Kofke D. A., J. Chem. Phys., 2015, 143, No. 4, 044504. DOI: https://doi.org/10.1063/1.4927339

Trokhymchuk A., Melnyk R., Nezbeda I., Condens. Matter Phys., 2015, 18. DOI: https://doi.org/10.5488/CMP.18.13501

Ushcats M. V., J. Chem. Phys., 2014, 141, No. 10, 101103. DOI: https://doi.org/10.1063/1.4895126

Schultz A. J., Kofke D. A., Fluid Phase Equilib., 2016, 409, 12–18. DOI: https://doi.org/10.1016/j.fluid.2015.09.016

Ushcats M. V., Bulavin L. A., Ushcats S. Y., Markina L. M., Phys. Rev. E, 2020, 102, 042130. DOI: https://doi.org/10.1103/PhysRevE.102.042130

Weiss P., J. Phys. Theor. Appl., 1907, 6, No. 1, 661–690. DOI: https://doi.org/10.1051/jphystap:019070060066100

Onsager L., Phys. Rev., 1944, 65, 117–149. DOI: https://doi.org/10.1103/PhysRev.65.117

Kaufman B., Phys. Rev., 1949, 76, 1232–1243. DOI: https://doi.org/10.1103/PhysRev.76.1232

Yang C. N., Phys. Rev., 1952, 85, 808–816. DOI: https://doi.org/10.1103/PhysRev.85.808

Ferrenberg A. M., Xu J., Landau D. P., Phys. Rev. E, 2018, 97, 043301. DOI: https://doi.org/10.1103/PhysRevE.97.043301

Kozlovskii M., Romanik R., Condens. Matter Phys., 2012, 14. DOI: https://doi.org/10.5488/CMP.14.43002

Kozlovskii M., Romanik R., Condens. Matter Phys., 2010, 13. DOI: https://doi.org/10.30970/jps.13.4007

Published

2025-03-28

Issue

Section

Articles

Categories

How to Cite

[1]
M. Ushcats, “Advances of Mayer’s cluster approach in quantitative theoretical description of phase transitions for various lattice models of matter”, Condens. Matter Phys., vol. 28, no. 1, p. 13501, Mar. 2025, doi: 10.5488/cmp.28.13501.

Similar Articles

1-10 of 47

You may also start an advanced similarity search for this article.