Algebraic solution and thermodynamic properties of graphene in the presence of minimal length

Authors

  • J. Gbètoho Laboratory of Physics and Applications (LPA), Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques (UNSTIM) Abomey, BP: 2282 Goho Abomey, République du Bénin https://orcid.org/0009-0005-1145-0853
  • F. A. Dossa Laboratory of Physics and Applications (LPA), Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques (UNSTIM) Abomey, BP: 2282 Goho Abomey, République du Bénin https://orcid.org/0000-0002-2694-4144
  • G. Y. H. Avossevou Institut de Mathématiques et de Sciences Physiques (IMSP), Université d’Abomey-Calavi (UAC), 01 BP 613 Porto-Novo, République du Bénin https://orcid.org/0000-0002-9609-0340

DOI:

https://doi.org/10.5488/cmp.28.33601

Keywords:

graphene, minimal length, su(1,1) symmetry, thermodynamic properties

Abstract

Graphene is a zero-gap semiconductor, where the electrons propagating inside are described by the ultrarelativistic Dirac equation normally reserved for very high energy massless particles. In this work, we show that graphene under a magnetic field in the presence of a minimal length has a hidden su(1, 1) symmetry. This symmetry allows us to construct the spectrum algebraically. In fact, a generalized uncertainty relation, leading to a non-zero minimum uncertainty on the position, would be closer to physical reality and allow us to control or create bound states in graphene. Using the partition function based on the Epstein zeta function, the thermodynamic properties are well determined. We find that the Dulong–Petit law is verified and the heat capacity is independent of the deformation parameter.

References

Wallace P. R., Phys. Rev., 1947, 71, 622–634. DOI: https://doi.org/10.1103/PhysRev.71.622

Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306, 666–669. DOI: https://doi.org/10.1126/science.1102896

Peres N. M. R., Castro Neto A. H., Guinea F., Phys. Rev. B, 2006, 73, 241403(R). DOI: https://doi.org/10.1103/PhysRevB.73.241403

Midya B., Fernández D. J., J. Phys. A: Math. Theor., 2014, 47, 285302. DOI: https://doi.org/10.1088/1751-8113/47/28/285302

Eshghi M., Mehraban H., Eur. Phys. J. Plus, 2017, 132, 121. DOI: https://doi.org/10.1140/epjp/i2017-11728-9

Garcia M. G., de Castro A. S., Alberto P., Castro L. B., Phys. Lett. A, 2017, 381, 2050. DOI: https://doi.org/10.1016/j.physleta.2017.04.037

Boumali A., Phys. Scr., 2015, 90, 045702. DOI: https://doi.org/10.1088/0031-8949/90/4/045702

Santos V., Maluf R. V., Almeida C. A. S., Ann. Phys., 2014, 349, 402–410. DOI: https://doi.org/10.1016/j.aop.2014.07.005

Boumali A., Hassanabadi H., Can. J. Phys., 2015, 93, 542–548. DOI: https://doi.org/10.1139/cjp-2014-0276

Hosseini M., Hassanabadi H., Hassanabadi S., Eur. Phys. J. Plus, 2019, 134, 6. DOI: https://doi.org/10.1140/epjp/i2019-12429-1

Hamil B., Lütfüoğlu B. C., Eur. Phys. J. Plus, 2022, 137, 1241. DOI: https://doi.org/10.1140/epjp/s13360-022-03463-3

Dagoudo L., Dossa F. A., Avossevou G. Y. H., EPL, 2024, 146, 56004. DOI: https://doi.org/10.1209/0295-5075/ad4b99

Dagoudo L., Dossa F. A., Avossevou G. Y. H., EPL, 2024, 147, 16001. DOI: https://doi.org/10.1209/0295-5075/ad5374

Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K., Rev. Mod. Phys., 2009, 81, 109–162. DOI: https://doi.org/10.1103/RevModPhys.81.109

Quesne C., Tkachuk V. M., J. Phys. A: Math. Gen., 2006, 39, 10909–10922. DOI: https://doi.org/10.1088/0305-4470/39/34/021

Hamil B., Aounallah H., Lütfüo˝glu B. C., Z. Naturforsch. A, 2020, 75, 809–817. DOI: https://doi.org/10.1515/zna-2020-0159

Dariescu M., Dariescu C., Chaos, Solitons Fractals, 2007, 33, 776–781. DOI: https://doi.org/10.1016/j.chaos.2006.03.021

Amati D., Ciafaloni M., Veneziano G., Phys. Lett. B, 1987, 197, 81. DOI: https://doi.org/10.1016/0370-2693(87)90346-7

Gross D. J., Mende P. F., Phys. Lett. B, 1987, 197, 129. DOI: https://doi.org/10.1016/0370-2693(87)90355-8

Brau F., J. Phys. A: Math. Gen., 1999, 32, 7691. DOI: https://doi.org/10.1088/0305-4470/32/44/308

Khodadi M., Nozari K., Dey S., Bhat A., Faizal M., Sci. Rep., 2016, 8, 1659.

Scardigli F., Lambiase G., Vagenas E., Phys. Lett. B, 2017, 767, 242. DOI: https://doi.org/10.1016/j.physletb.2017.01.054

Pacheco M. H., Landim R. R., Almeida C. A. S., Phys. Lett. A, 2003, 311, 93–96. DOI: https://doi.org/10.1016/S0375-9601(03)00467-5

Boumali A., Phys. Scr., 2007, 76, 669. DOI: https://doi.org/10.1088/0031-8949/76/6/014

Dossa F. A., Phys. Scr., 2021, 96, 105703. DOI: https://doi.org/10.1088/1402-4896/ac0956

Menculini L., Panella O., Roy P., Phys. Rev. D, 2013, 87, 065017. DOI: https://doi.org/10.1103/PhysRevD.87.065017

Published

2025-09-23

How to Cite

[1]
J. Gbètoho, F. A. Dossa, and G. Y. H. Avossevou, “Algebraic solution and thermodynamic properties of graphene in the presence of minimal length”, Condens. Matter Phys., vol. 28, no. 3, p. 33601, Sep. 2025, doi: 10.5488/cmp.28.33601.

Similar Articles

21-30 of 70

You may also start an advanced similarity search for this article.