Generalised two-dimensional nonlinear oscillator with a position-dependent effective mass and the thermodynamic properties
DOI:
https://doi.org/10.5488/cmp.28.33701Keywords:
nonlinear oscillator, Nikiforov-Uvarov, thermodynamic propertiesAbstract
We investigate a two-dimensional nonlinear oscillator with a position-dependent effective mass in the framework of nonrelativistic quantum mechanics. Using the Nikiforov-Uvarov method, we obtain exact analytical expressions for the energy spectrum and wave functions. Based on the canonical partition function, we derive key thermodynamic quantities, including internal energy, specific heat, free energy, and entropy. Our results show that, unlike the one-dimensional case, where the specific heat is unaffected by the nonlinearity parameter k, the two-dimensional system exhibits a strong k−dependence. At high temperatures, the specific heat becomes temperature-independent for fixed values of k, in line with the Dulong–Petit law. However, these behaviors occur only for negative values of k. These findings highlight the impact of effective mass nonlinearity on macroscopic thermodynamic quantities and suggest that tuning the parameter k could serve as an effective strategy for enhancing the performance of quantum devices, including thermal machines and optoelectronic components.
References
Barut A. O., Inomata A., Junker G., J. Phys. A: Math. Gen., 1987, 20, 6271–6280. DOI: https://doi.org/10.1088/0305-4470/20/18/027
Barut A. O., Inomata, A., Junker, G., J. Phys. A: Math. Gen., 1990, 23, 1179. DOI: https://doi.org/10.1088/0305-4470/23/7/023
Nieto L. M., Santander M., Rosu H. C., Mod. Phys. Lett., 1999, 14, 2463–2469. DOI: https://doi.org/10.1142/S021773239900256X
José F. C., Manuel F. R., Mariano S., Int. J. Theor. Phys., 2011, 50, 2170–2178. DOI: https://doi.org/10.1007/s10773-011-0688-z
Von Roos O., Mavromatis H., Phys. Rev. B, 1985, 31, 2294. DOI: https://doi.org/10.1103/PhysRevB.31.2294
De Saavedra F. A., Boronat J., Polls A., Fabrocini A., Phys. Rev. B, 1994, 50, 4248.
Barranco M. M., Gatica S. M., Hernandez E. S., Navarro J., Phys. Rev. B, 1997, 56, 8997. DOI: https://doi.org/10.1103/PhysRevB.56.8997
Dodin I. Y., Fisch N. J., Phys. Rev. E, 2008, 77, 1–10. DOI: https://doi.org/10.1103/PhysRevE.77.036402
Andronov A. A., Belyantsev A. M, Gavrilenko V. I., Dodin E. P., Krasilnik E. F., Nikonorov V. V., Pavlov S. A., Shvarts M. M., Zh. Eksp. Teor. Fiz., 1986, 90, 367–384.
Tajmar M., Assis A. K. T., J. Adv. Phys., 2015, 4, 77–82. DOI: https://doi.org/10.1166/jap.2015.1159
Cari¨nena J. F., Ra¨nada M. F., Santander M., Rep. Math. Phys., 2004, 54, 285–293. DOI: https://doi.org/10.1016/S0034-4877(04)80020-X
Cari¨nena J. F., Ra¨nada M. F., Santander M., Senthilvelan M., Nonlinearity, 2004, 17, 1941–63. DOI: https://doi.org/10.1088/0951-7715/17/5/019
Amir N., Iqbal S., Commun. Theor. Phys., 2014, 62, 790. DOI: https://doi.org/10.1088/0253-6102/62/6/03
Zhu Q. G., Kroemer H., Phys. Rev. B, 1983, 27, 3519. DOI: https://doi.org/10.1103/PhysRevB.27.3519
Amir N., Iqbal S., EPL, 2015, 111, 20005. DOI: https://doi.org/10.1209/0295-5075/111/20005
Gendenshtein L., JETP Lett., 1983, 38, 356. DOI: https://doi.org/10.1037//0003-066X.38.3.356a
Eyube E., Notani P., Onate C., Wadata U., Omugbe E., Bitrus B., Najoji S., Heliyon, 2023, 9, No. 10, e20848. DOI: https://doi.org/10.1016/j.heliyon.2023.e20848
Vubangsi M. , Tchoffo M., Fai L. C., Eur. Phys. J. Plus, 2014, 129, 105. DOI: https://doi.org/10.1140/epjp/i2014-14105-4
Schrödinger E., Proc. R. Ir. Acad., Sect. A, 1940, 46, 9–16.
Dong S. H., Factorization method in Quantum Mechanics, Springer Dordrecht, 2007. DOI: https://doi.org/10.1007/978-1-4020-5796-0
Bagchi B., Banerjee A., Quesne C., Tkachuk V. M., J. Phys. A: Math. Gen., 2005, 38, 2929–2945. DOI: https://doi.org/10.1088/0305-4470/38/13/008
Sameer M. I., Mol. Phys., 2012, 110, 1415–1428. DOI: https://doi.org/10.1080/00268976.2012.656148
Ikot A. N., Okon I. B., Okorie U. S., Omugbe E., Abdel-Aty A.-H., Obagboye L. F., Ahmadov A. I., Okpara N., Duque C. A., Hewa Abdullah Y., Qadir Karwan W., Z. Angew. Math. Phys., 2024, 75, 18. DOI: https://doi.org/10.1007/s00033-023-02150-2
Hassanabbadi H., Maghsoodi E., Ikot A. N., Zarrinkamar S., Adv. High Energy Phys., 2013, 2013, 923686. DOI: https://doi.org/10.1155/2013/923686
Demirci M., Sever R., Eur. Phys. J. Plus, 2023, 138, No. 5, 409. DOI: https://doi.org/10.1140/epjp/s13360-023-04030-0
Berkdemir C., In: Theoretical Concepts of Quantum Mechanics, Pahlavani M. R. (Ed.), InTech, 2012, 225–252.
Falaye B. J., Oyewumi K. J., Abbas M., Chin. Phys. B, 2013, 22, No. 11, 110301. DOI: https://doi.org/10.1088/1674-1056/22/11/110301
Nikiforov A. F., Uvarov V. B., Special Functions of Mathematical Physics, Birkhäuser Boston, Boston, MA, 1988. DOI: https://doi.org/10.1007/978-1-4757-1595-8
Nikiforov A. F., Uvarov V. B., Suslov S. K., Classical Orthogonal Polynomials of a Discrete Variable, Springer Berlin Heidelberg, Berlin, Heidelberg, 1991. DOI: https://doi.org/10.1007/978-3-642-74748-9
Abramowitz M., Stegun I. A., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York, 1964.
Tezcan C., Sever R., Int. J. Theor. Phys., 2009, 48, 337. DOI: https://doi.org/10.1007/s10773-008-9806-y
Dossa F. A., Phys. Scr., 2021, 96, 105703. DOI: https://doi.org/10.1088/1402-4896/ac0956
Morse P. M., Feshbach H., Methods of Theoretical Physics, 1946.
Downloads
Published
License
Copyright (c) 2025 S. E. Bokpe, F. A. Dossa, G. Y. H. Avossevou

This work is licensed under a Creative Commons Attribution 4.0 International License.