Effective and asymptotic scaling in a one-dimensional billiard problem

Authors

  • T. Holovatch Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 79011 Lviv, Ukraine; L4 Collaboration and Doctoral College for the Statistical Physics of Complex Systems, Lviv-Leipzig-Lorraine-Coventry, Europe https://orcid.org/0009-0005-2953-8730
  • Yu. Kozitsky Institute of Mathematics, Maria Curie-Skłodowska University, 20-031 Lublin, Poland https://orcid.org/0000-0002-4320-8835
  • K. Pilorz Institute of Mathematics, Maria Curie-Skłodowska University, 20-031 Lublin, Poland https://orcid.org/0000-0003-2596-3260
  • Yu. Holovatch Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, Lviv, 79011, Ukraine; L4 Collaboration and Doctoral College for the Statistical Physics of Complex Systems, Lviv-Leipzig-Lorraine-Coventry, Europe; Centre for Fluid and Complex Systems, Coventry University, Coventry CV1 5FB, UK; Complexity Science Hub Vienna, 1080 Vienna, Austria https://orcid.org/0000-0002-1125-2532

DOI:

https://doi.org/10.5488/cmp.28.23401

Keywords:

billiards, one-dimensional cold gas, shock wave, scaling, scaling exponents, molecular dynamics

Abstract

The emergence of power laws that govern the large-time dynamics of a one-dimensional billiard of N point particles is analysed. In the initial state, the resting particles are placed in the positive half-line x ≥ 0 at equal distances. Their masses alternate between two distinct values. The dynamics is initialized by giving the leftmost particle a positive velocity. Due to elastic inter-particle collisions, the whole system gradually comes into motion, filling both right-hand and left-hand half-lines. As shown by [Chakraborti S., Dhar A., Krapivsky P., SciPost Phys., 2022, 13, 074], an inherent feature of such a billiard is the emergence of two different modes: the shock wave that propagates in x ≥ 0 and the splash region in x < 0. Moreover, the behaviour of the relevant observables is characterized by universal asymptotic power-law dependencies. In view of the finite size of the system and of finite observation times, these dependencies only start to acquire a universal character. To analyse them, we set up molecular dynamics simulations using the concept of effective scaling exponents, familiar in the theory of continuous phase transitions. We present results for the effective exponents that govern the large-time behaviour of the shock-wave front, the number of collisions, the energies and momentum of different modes and analyse their tendency to approach corresponding universal values.

References

Yukhnovskii I. R., Phase Transitions of the Second Order. Collective Variables Method, World Scientific, Singapore, 1987. DOI: https://doi.org/10.1142/0289

Sinai Y.G.,Introduction to Ergodic Theory, Mathematical Notes, Vol. 18, Princeton University Press, Princeton, New Jersey, 1976.

Tabachnikov S., Geometry and Billiards, The Student Mathematical Library, Vol. 30, American Mathematical Society, Providence, Rhode Island, 2005. DOI: https://doi.org/10.1090/stml/030

Gorban A. N., Philos. Trans. R. Soc. A, 2018, 376, No. 2118, 20170238. DOI: https://doi.org/10.1098/rsta.2017.0238

Chakraborti S., Dhar A., Krapivsky P. L., SciPost Phys., 2022, 13, 074. DOI: https://doi.org/10.21468/SciPostPhys.13.3.074

Garrido P. L., Hurtado P. I., Nadrowski B., Phys. Rev. Lett., 2001, 86, 5486–5489. DOI: https://doi.org/10.1103/PhysRevLett.86.5486

Dhar A., Phys. Rev. Lett., 2001, 86, 3554–3557. DOI: https://doi.org/10.1103/PhysRevLett.86.3554

Grassberger P., Nadler W., Yang L., Phys. Rev. Lett., 2002, 89, 180601. DOI: https://doi.org/10.1103/PhysRevLett.89.180601

Lepri S., Livi R., Politi A., Phys. Rev. Lett., 2020, 125, 040604. DOI: https://doi.org/10.1103/PhysRevLett.125.040604

Antal T., Krapivsky P. L., Redner S., Phys. Rev. E, 2008, 78, 030301. DOI: https://doi.org/10.1103/PhysRevE.78.030301

Landau L. D., Lifshitz E. M., Fluid Mechanics, Course of Theoretical Physics, Vol. 6, Elsevier, Amsterdam, Boston, Heidelberg, 1987.

Chakraborti S., Ganapa S., Krapivsky P. L., Dhar A., Phys. Rev. Lett., 2021, 126, 244503. DOI: https://doi.org/10.1103/PhysRevLett.126.244503

Ganapa S., Chakraborti S., Krapivsky P. L., Dhar A., Phys. Fluids, 2021, 33, No. 8, 087113. DOI: https://doi.org/10.1063/5.0058152

Fisher M. E., Rep. Prog. Phys., 1967, 30, No. 2, 615. DOI: https://doi.org/10.1088/0034-4885/30/2/306

Stanley H. E., Introduction to Phase Transitions and Critical Phenomena, International series of monographs on physics, Vol. 46, Oxford University Press, New York, Oxford, 1987.

Berche B., Ellis T., Holovatch Y., Kenna R., SciPost Phys. Lect. Notes, 2022, 60.

Kouvel J. S., Fisher M. E., Phys. Rev., 1964, 136, A1626–A1632. DOI: https://doi.org/10.1103/PhysRev.136.A1626

Riedel E. K., Wegner F. J., Phys. Rev. B, 1974, 9, 294–315. DOI: https://doi.org/10.1103/PhysRevB.9.294

Privman V., In: Finite Size Scaling and Numerical Simulation of Statistical Systems, Privman V. (Ed.), World Scientific, Singapore, 1990, 1–98. DOI: https://doi.org/10.1142/9789814503419_0001

Ardourel V., Bangu S., Stud. Hist. Philos. Sci., 2023, 100, 99–106. DOI: https://doi.org/10.1016/j.shpsa.2023.05.010

Folk R., Moser G., J. Phys. A: Math. Gen., 2006, 39, No. 24, R207. DOI: https://doi.org/10.1088/0305-4470/39/24/R01

Dudka M., Folk R., Holovatch Y., Ivaneiko D., J. Magn. Magn. Mater., 2003, 256, No. 1, 243–251. DOI: https://doi.org/10.1016/S0304-8853(02)00569-3

Perumal A., Srinivas V., Rao V. V., Dunlap R. A., Phys. Rev. Lett., 2003, 91, 137202. DOI: https://doi.org/10.1103/PhysRevLett.91.137202

Ruiz-Lorenzo J. J., Dudka M., Holovatch Y., Phys. Rev. E, 2022, 106, 034123. DOI: https://doi.org/10.1103/PhysRevE.106.034123

Ruiz-Lorenzo J. J., Dudka M., Krasnytska M., Holovatch Y., Phys. Rev. E, 2025, 111, 024127. DOI: https://doi.org/10.1103/PhysRevE.111.024127

Ising lectures, 2024, Annual Workshop on Critical Phenomena and Complex Systems, URL https://icmp.lviv.ua/ising/archive/2024.html.

Published

2025-06-25

How to Cite

[1]
T. Holovatch, Y. Kozitsky, K. Pilorz, and Y. Holovatch, “Effective and asymptotic scaling in a one-dimensional billiard problem”, Condens. Matter Phys., vol. 28, no. 2, p. 23401, Jun. 2025, doi: 10.5488/cmp.28.23401.

Similar Articles

1-10 of 60

You may also start an advanced similarity search for this article.