Effective and asymptotic scaling in a one-dimensional billiard problem
DOI:
https://doi.org/10.5488/cmp.28.23401Keywords:
billiards, one-dimensional cold gas, shock wave, scaling, scaling exponents, molecular dynamicsAbstract
The emergence of power laws that govern the large-time dynamics of a one-dimensional billiard of N point particles is analysed. In the initial state, the resting particles are placed in the positive half-line x ≥ 0 at equal distances. Their masses alternate between two distinct values. The dynamics is initialized by giving the leftmost particle a positive velocity. Due to elastic inter-particle collisions, the whole system gradually comes into motion, filling both right-hand and left-hand half-lines. As shown by [Chakraborti S., Dhar A., Krapivsky P., SciPost Phys., 2022, 13, 074], an inherent feature of such a billiard is the emergence of two different modes: the shock wave that propagates in x ≥ 0 and the splash region in x < 0. Moreover, the behaviour of the relevant observables is characterized by universal asymptotic power-law dependencies. In view of the finite size of the system and of finite observation times, these dependencies only start to acquire a universal character. To analyse them, we set up molecular dynamics simulations using the concept of effective scaling exponents, familiar in the theory of continuous phase transitions. We present results for the effective exponents that govern the large-time behaviour of the shock-wave front, the number of collisions, the energies and momentum of different modes and analyse their tendency to approach corresponding universal values.
References
Yukhnovskii I. R., Phase Transitions of the Second Order. Collective Variables Method, World Scientific, Singapore, 1987. DOI: https://doi.org/10.1142/0289
Sinai Y.G.,Introduction to Ergodic Theory, Mathematical Notes, Vol. 18, Princeton University Press, Princeton, New Jersey, 1976.
Tabachnikov S., Geometry and Billiards, The Student Mathematical Library, Vol. 30, American Mathematical Society, Providence, Rhode Island, 2005. DOI: https://doi.org/10.1090/stml/030
Gorban A. N., Philos. Trans. R. Soc. A, 2018, 376, No. 2118, 20170238. DOI: https://doi.org/10.1098/rsta.2017.0238
Chakraborti S., Dhar A., Krapivsky P. L., SciPost Phys., 2022, 13, 074. DOI: https://doi.org/10.21468/SciPostPhys.13.3.074
Garrido P. L., Hurtado P. I., Nadrowski B., Phys. Rev. Lett., 2001, 86, 5486–5489. DOI: https://doi.org/10.1103/PhysRevLett.86.5486
Dhar A., Phys. Rev. Lett., 2001, 86, 3554–3557. DOI: https://doi.org/10.1103/PhysRevLett.86.3554
Grassberger P., Nadler W., Yang L., Phys. Rev. Lett., 2002, 89, 180601. DOI: https://doi.org/10.1103/PhysRevLett.89.180601
Lepri S., Livi R., Politi A., Phys. Rev. Lett., 2020, 125, 040604. DOI: https://doi.org/10.1103/PhysRevLett.125.040604
Antal T., Krapivsky P. L., Redner S., Phys. Rev. E, 2008, 78, 030301. DOI: https://doi.org/10.1103/PhysRevE.78.030301
Landau L. D., Lifshitz E. M., Fluid Mechanics, Course of Theoretical Physics, Vol. 6, Elsevier, Amsterdam, Boston, Heidelberg, 1987.
Chakraborti S., Ganapa S., Krapivsky P. L., Dhar A., Phys. Rev. Lett., 2021, 126, 244503. DOI: https://doi.org/10.1103/PhysRevLett.126.244503
Ganapa S., Chakraborti S., Krapivsky P. L., Dhar A., Phys. Fluids, 2021, 33, No. 8, 087113. DOI: https://doi.org/10.1063/5.0058152
Fisher M. E., Rep. Prog. Phys., 1967, 30, No. 2, 615. DOI: https://doi.org/10.1088/0034-4885/30/2/306
Stanley H. E., Introduction to Phase Transitions and Critical Phenomena, International series of monographs on physics, Vol. 46, Oxford University Press, New York, Oxford, 1987.
Berche B., Ellis T., Holovatch Y., Kenna R., SciPost Phys. Lect. Notes, 2022, 60.
Kouvel J. S., Fisher M. E., Phys. Rev., 1964, 136, A1626–A1632. DOI: https://doi.org/10.1103/PhysRev.136.A1626
Riedel E. K., Wegner F. J., Phys. Rev. B, 1974, 9, 294–315. DOI: https://doi.org/10.1103/PhysRevB.9.294
Privman V., In: Finite Size Scaling and Numerical Simulation of Statistical Systems, Privman V. (Ed.), World Scientific, Singapore, 1990, 1–98. DOI: https://doi.org/10.1142/9789814503419_0001
Ardourel V., Bangu S., Stud. Hist. Philos. Sci., 2023, 100, 99–106. DOI: https://doi.org/10.1016/j.shpsa.2023.05.010
Folk R., Moser G., J. Phys. A: Math. Gen., 2006, 39, No. 24, R207. DOI: https://doi.org/10.1088/0305-4470/39/24/R01
Dudka M., Folk R., Holovatch Y., Ivaneiko D., J. Magn. Magn. Mater., 2003, 256, No. 1, 243–251. DOI: https://doi.org/10.1016/S0304-8853(02)00569-3
Perumal A., Srinivas V., Rao V. V., Dunlap R. A., Phys. Rev. Lett., 2003, 91, 137202. DOI: https://doi.org/10.1103/PhysRevLett.91.137202
Ruiz-Lorenzo J. J., Dudka M., Holovatch Y., Phys. Rev. E, 2022, 106, 034123. DOI: https://doi.org/10.1103/PhysRevE.106.034123
Ruiz-Lorenzo J. J., Dudka M., Krasnytska M., Holovatch Y., Phys. Rev. E, 2025, 111, 024127. DOI: https://doi.org/10.1103/PhysRevE.111.024127
Ising lectures, 2024, Annual Workshop on Critical Phenomena and Complex Systems, URL https://icmp.lviv.ua/ising/archive/2024.html.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 T. Holovatch, Yu. Kozitsky, K. Pilorz, Yu. Holovatch

This work is licensed under a Creative Commons Attribution 4.0 International License.