Mutual effect of charge- and number-density correlations in ionic liquids and concentrated electrolytes

Authors

DOI:

https://doi.org/10.5488/cmp.28.23601

Keywords:

charge-charge correlation function, correlation lengths, concentrated electrolytes, mesoscopic theory

Abstract

Correlation functions in concentrated ionic systems are studied within the mesoscopic theory at the level of the Gaussian approximation. The previously neglected fluctuation contribution to the inverse charge-charge correlation function is taken into account to verify the accuracy of the previous results. We calculate the correlation lengths and the amplitudes and show that the fluctuation contribution does not lead to significant changes of the results. We also derive necessary conditions for the presence of both, the oscillatory and the monotonic decays of the charge-charge correlations that must be satisfied by the noncoulombic contributions to the inverse charge-charge correlation function. At the level of the Gaussian approximation, these conditions are not satisfied. Extension of the theory beyond the Gaussian approximation is necessary to verify whether the asymptotic decay of the charge-charge correlations is monotonous or oscillatory, as suggested by the surface force apparatus or by the SAXS experiments, respectively.

References

Seddon K. R., J. Chem. Technol. Biotechnol., 1997, 68, No. 4, 351–356. DOI: https://doi.org/10.1002/(SICI)1097-4660(199704)68:4<351::AID-JCTB613>3.0.CO;2-4

Fedorov M. V., Kornyshev A. A., Chem. Rev., 2014, 114, No. 5, 2978–3036. DOI: https://doi.org/10.1021/cr400374x

Suo L., Borodin O., Gao T., Olguin M., Ho J., Fan X., Luo C., Wang C., Xu K., Science, 2015, 350, No. 6263, 938–943. DOI: https://doi.org/10.1126/science.aab1595

Zhang S., Zhang J., Zhang Y., Deng Y., Chem. Rev., 2017, 117, No. 10, 6755–6833. DOI: https://doi.org/10.1021/acs.chemrev.6b00509

Watanabe M., Thomas M. L., Zhang S., Ueno K., Yasuda T., Dokko K., Chem. Rev., 2017, 117, No. 10, 7190–7239. DOI: https://doi.org/10.1021/acs.chemrev.6b00504

Lei Z., Dai C., Hallett J., Shiflett M., Chem. Rev., 2024, 124, No. 12, 7533–7535. DOI: https://doi.org/10.1021/acs.chemrev.4c00291

Debye P., Hückel E., Phys. Z., 1923, 24, 185–206.

Kirkwood J. G., Chem. Rev., 1936, 19, No. 3, 275–307. DOI: https://doi.org/10.1021/cr60064a007

Leote de Carvalho R. J. F., Evans R., Mol. Phys., 1994, 83, No. 4, 619–654. DOI: https://doi.org/10.1080/00268979400101491

Gebbie M. A., Valtiner M., Banquy X., Fox E. T., Henderson W. A., Israelachvili J. N., Proc. Natl. Acad. Sci. U. S. A., 2013, 110, No. 24, 9674–9679. DOI: https://doi.org/10.1073/pnas.1307871110

Smith A. M., Lee A. A., Perkin S., J. Phys. Chem. Lett., 2016, 7, 2157–2163. DOI: https://doi.org/10.1021/acs.jpclett.6b00867

Lee A. A., Perez-Martinez C. S., Smith A. M., Perkin S., Faraday Discuss., 2017, 199, 239–259. DOI: https://doi.org/10.1039/C6FD00250A

Hjalmarsson N., Atkin R., Rutland M. W., Chem. Commun., 2017, 53, No. 3, 647–650. DOI: https://doi.org/10.1039/C6CC07396D

Gaddam P., Ducker W., Langmuir, 2019, 35, No. 17, 5719–5727. DOI: https://doi.org/10.1021/acs.langmuir.9b00375

Han M., Espinosa-Marzal R. M., J. Phys. Chem. C, 2018, 122, No. 37, 21344–21355. DOI: https://doi.org/10.1021/acs.jpcc.8b04778

Kumar S., Cats P., Alotaibi M. B., Ayirala S. C., Yousef A. A., van Roij R., Siretanu I., Mugele F., J. Colloid Interface Sci., 2022, 622, 819–827. DOI: https://doi.org/10.1016/j.jcis.2022.05.004

Groves T., Perkin S., Faraday Discuss., 2024, 253, 193–211. DOI: https://doi.org/10.1039/D4FD00040D

Kjellander R., J. Chem. Phys., 2018, 148, No. 19, 193701. DOI: https://doi.org/10.1063/1.5010024

Coupette F., Lee A. A., Härtel A., Phys. Rev. Lett., 2018, 121, No. 7, 075501. DOI: https://doi.org/10.1103/PhysRevLett.121.075501

Rotenberg B., Bernard O., Hansen J.-P., J. Phys.: Condens. Matter, 2018, 30, No. 5, 054005. DOI: https://doi.org/10.1088/1361-648X/aaa3ac

Adar R. M., Safran S. A., Diamant H., Andelman D., Phys. Rev. E, 2019, 100, No. 4, 042615. DOI: https://doi.org/10.1103/PhysRevE.100.042615

Coles S. W., Park C., Nikam R., Kanduč M., Dzubiella J., Rotenberg B., J. Phys. Chem. B, 2020, 124, No. 9, 1778–1786.

Cats P., Evans R., Härtel A., van Roij R., J. Chem. Phys., 2021, 154, No. 12, 124504. DOI: https://doi.org/10.1063/5.0039619

Outhwaite C. W., Bhuiyan L. B., J. Chem. Phys., 2021, 155, No. 1, 014504. DOI: https://doi.org/10.1063/5.0054203

Zeman J., Kondrat S., Holm C., Chem. Commun., 2020, 56, No. 100, 15635–15638. DOI: https://doi.org/10.1039/D0CC05023G

Zeman J., Kondrat S., Holm C., J. Chem. Phys., 2021, 155, No. 20, 204501. DOI: https://doi.org/10.1063/5.0069340

Yang J., Kondrat S., Lian C., Liu H., Schlaich A., Holm C., Phys. Rev. Lett, 2023, 131, No. 11, 118201. DOI: https://doi.org/10.1103/PhysRevLett.131.118201

Jäger H., Schlaich A., Yang J., Lian C., Kondrat S., Holm C., Faraday Discuss., 2023, 246, 520–539. DOI: https://doi.org/10.1039/D3FD00043E

Krucker-Velasquez E., Swan J. W., J. Chem. Phys., 2021, 155, No. 13, 134903. DOI: https://doi.org/10.1063/5.0061230

Elliott G. R., Gregory K. P., Robertson H., Craig V. S., Webber G. B., Wanless E. J., Page A. J., Chem. Phys. Lett., 2024, 843, 141190. DOI: https://doi.org/10.1016/j.cplett.2024.141190

Dinpajooh M., Intan N. N., Duignan T. T., Biasin E., Fulton J. L., Kathmann S. M., Schenter G. K., Mundy C. J., J. Chem. Phys., 2024, 161, No. 23, 230901. DOI: https://doi.org/10.1063/5.0238708

Dinpajooh M., Biasin E., Nienhuis E. T., Mergelsberg S. T., Benmore C. J., Schenter G. K., Fulton J. L., Kathmann S. M., Mundy C. J., J. Chem. Phys., 2024, 161, 151102. DOI: https://doi.org/10.1063/5.0234518

Härtel A., Bültmann M., Coupette F., Phys. Rev. Lett., 2023, 130, No. 10, 108202. DOI: https://doi.org/10.1103/PhysRevLett.130.108202

Härtel A., Kjellander R., Preprint arXiv:2412.01653, 2024.

Kjellander R., Soft Matter, 2019, 15, 5866–5895.

Wang S., Tao H., Yang J., Cheng J., Liu H., Lian C., J. Phys. Chem. Lett., 2024, 33, 7147–7153. DOI: https://doi.org/10.1021/acs.jpclett.4c01698

Ciach A., Patsahan O., J. Mol. Liq., 2023, 377, 121453. DOI: https://doi.org/10.1016/j.molliq.2023.121453

Zubarev D., Dokl. Akad. Nauk SSSR, 1954, 95, 757–760, (in Russian).

Yukhnovskii I., Sov. Phys. JETP, 1958, 34, 263. DOI: https://doi.org/10.2307/2606818

Yukhnovskii I. R., Holovko M. F., Statistical Theory of Classical Equilibrium Systems, Naukova Dumka, Kiev, 1980, (in Russian).

Yukhnovskii I. R., Phase Transitions of the Second Order, Collective Variable Methods, World Scientific, Singapore, 1987. DOI: https://doi.org/10.1142/0289

Patsahan O., Mryglod I., J. Phys. A: Math. Gen., 2006, 39, No. 40, L583–L588. DOI: https://doi.org/10.1088/0305-4470/39/40/L02

Ciach A., Stell G., Int. J. Mod. Phys. B, 2005, 19, 3309–3343. DOI: https://doi.org/10.1142/S0217979205032176

Ciach A., Phys. Rev. E, 2008, 78, 061505. DOI: https://doi.org/10.1103/PhysRevE.78.021203

Ciach A., Mol. Phys., 2011, 109, 1101–1119. DOI: https://doi.org/10.1080/00268976.2010.548343

Ciach A., Soft Matter, 2018, 14, 5497–5508. DOI: https://doi.org/10.1039/C8SM00602D

Patsahan O., Meyra A., Ciach A., J. Mol. Liq., 2022, 363, 119844. DOI: https://doi.org/10.1016/j.molliq.2022.119844

Ciach A., Patsahan O., J. Phys.: Condens. Matter, 2021, 33, 37LT01. DOI: https://doi.org/10.1088/1361-648X/ac0f9e

Ciach A., Patsahan O., J. Mol. Liq., 2023, 382, 121949. DOI: https://doi.org/10.1016/j.molliq.2023.121949

Stillinger F. H., Lovett R., J. Chem. Phys., 1968, 48, 3858–3868. DOI: https://doi.org/10.1063/1.1669709

Ciach A., J. Mol. Liq., 2018, 270, 138–144. DOI: https://doi.org/10.1016/j.molliq.2017.10.002

Ciach A., Patsahan O., Phys. Chem. Chem. Phys, 2025, 27, 9143–9151. DOI: https://doi.org/10.1039/D4CP04669B

Boda D., Henderson D., Chan K.-Y., J. Chem. Phys., 1999, 5346–5350. DOI: https://doi.org/10.1063/1.478429

Di Caprio D., Valiskó M., Holovko M., Boda D., Mol. Phys., 2006, 104, No. 22–24, 3777–3786. DOI: https://doi.org/10.1080/00268970600976774

Published

2025-06-25

How to Cite

[1]
O. Patsahan and A. Ciach, “Mutual effect of charge- and number-density correlations in ionic liquids and concentrated electrolytes”, Condens. Matter Phys., vol. 28, no. 2, p. 23601, Jun. 2025, doi: 10.5488/cmp.28.23601.

Similar Articles

1-10 of 62

You may also start an advanced similarity search for this article.