Mutual effect of charge- and number-density correlations in ionic liquids and concentrated electrolytes
DOI:
https://doi.org/10.5488/cmp.28.23601Keywords:
charge-charge correlation function, correlation lengths, concentrated electrolytes, mesoscopic theoryAbstract
Correlation functions in concentrated ionic systems are studied within the mesoscopic theory at the level of the Gaussian approximation. The previously neglected fluctuation contribution to the inverse charge-charge correlation function is taken into account to verify the accuracy of the previous results. We calculate the correlation lengths and the amplitudes and show that the fluctuation contribution does not lead to significant changes of the results. We also derive necessary conditions for the presence of both, the oscillatory and the monotonic decays of the charge-charge correlations that must be satisfied by the noncoulombic contributions to the inverse charge-charge correlation function. At the level of the Gaussian approximation, these conditions are not satisfied. Extension of the theory beyond the Gaussian approximation is necessary to verify whether the asymptotic decay of the charge-charge correlations is monotonous or oscillatory, as suggested by the surface force apparatus or by the SAXS experiments, respectively.
References
Seddon K. R., J. Chem. Technol. Biotechnol., 1997, 68, No. 4, 351–356. DOI: https://doi.org/10.1002/(SICI)1097-4660(199704)68:4<351::AID-JCTB613>3.0.CO;2-4
Fedorov M. V., Kornyshev A. A., Chem. Rev., 2014, 114, No. 5, 2978–3036. DOI: https://doi.org/10.1021/cr400374x
Suo L., Borodin O., Gao T., Olguin M., Ho J., Fan X., Luo C., Wang C., Xu K., Science, 2015, 350, No. 6263, 938–943. DOI: https://doi.org/10.1126/science.aab1595
Zhang S., Zhang J., Zhang Y., Deng Y., Chem. Rev., 2017, 117, No. 10, 6755–6833. DOI: https://doi.org/10.1021/acs.chemrev.6b00509
Watanabe M., Thomas M. L., Zhang S., Ueno K., Yasuda T., Dokko K., Chem. Rev., 2017, 117, No. 10, 7190–7239. DOI: https://doi.org/10.1021/acs.chemrev.6b00504
Lei Z., Dai C., Hallett J., Shiflett M., Chem. Rev., 2024, 124, No. 12, 7533–7535. DOI: https://doi.org/10.1021/acs.chemrev.4c00291
Debye P., Hückel E., Phys. Z., 1923, 24, 185–206.
Kirkwood J. G., Chem. Rev., 1936, 19, No. 3, 275–307. DOI: https://doi.org/10.1021/cr60064a007
Leote de Carvalho R. J. F., Evans R., Mol. Phys., 1994, 83, No. 4, 619–654. DOI: https://doi.org/10.1080/00268979400101491
Gebbie M. A., Valtiner M., Banquy X., Fox E. T., Henderson W. A., Israelachvili J. N., Proc. Natl. Acad. Sci. U. S. A., 2013, 110, No. 24, 9674–9679. DOI: https://doi.org/10.1073/pnas.1307871110
Smith A. M., Lee A. A., Perkin S., J. Phys. Chem. Lett., 2016, 7, 2157–2163. DOI: https://doi.org/10.1021/acs.jpclett.6b00867
Lee A. A., Perez-Martinez C. S., Smith A. M., Perkin S., Faraday Discuss., 2017, 199, 239–259. DOI: https://doi.org/10.1039/C6FD00250A
Hjalmarsson N., Atkin R., Rutland M. W., Chem. Commun., 2017, 53, No. 3, 647–650. DOI: https://doi.org/10.1039/C6CC07396D
Gaddam P., Ducker W., Langmuir, 2019, 35, No. 17, 5719–5727. DOI: https://doi.org/10.1021/acs.langmuir.9b00375
Han M., Espinosa-Marzal R. M., J. Phys. Chem. C, 2018, 122, No. 37, 21344–21355. DOI: https://doi.org/10.1021/acs.jpcc.8b04778
Kumar S., Cats P., Alotaibi M. B., Ayirala S. C., Yousef A. A., van Roij R., Siretanu I., Mugele F., J. Colloid Interface Sci., 2022, 622, 819–827. DOI: https://doi.org/10.1016/j.jcis.2022.05.004
Groves T., Perkin S., Faraday Discuss., 2024, 253, 193–211. DOI: https://doi.org/10.1039/D4FD00040D
Kjellander R., J. Chem. Phys., 2018, 148, No. 19, 193701. DOI: https://doi.org/10.1063/1.5010024
Coupette F., Lee A. A., Härtel A., Phys. Rev. Lett., 2018, 121, No. 7, 075501. DOI: https://doi.org/10.1103/PhysRevLett.121.075501
Rotenberg B., Bernard O., Hansen J.-P., J. Phys.: Condens. Matter, 2018, 30, No. 5, 054005. DOI: https://doi.org/10.1088/1361-648X/aaa3ac
Adar R. M., Safran S. A., Diamant H., Andelman D., Phys. Rev. E, 2019, 100, No. 4, 042615. DOI: https://doi.org/10.1103/PhysRevE.100.042615
Coles S. W., Park C., Nikam R., Kanduč M., Dzubiella J., Rotenberg B., J. Phys. Chem. B, 2020, 124, No. 9, 1778–1786.
Cats P., Evans R., Härtel A., van Roij R., J. Chem. Phys., 2021, 154, No. 12, 124504. DOI: https://doi.org/10.1063/5.0039619
Outhwaite C. W., Bhuiyan L. B., J. Chem. Phys., 2021, 155, No. 1, 014504. DOI: https://doi.org/10.1063/5.0054203
Zeman J., Kondrat S., Holm C., Chem. Commun., 2020, 56, No. 100, 15635–15638. DOI: https://doi.org/10.1039/D0CC05023G
Zeman J., Kondrat S., Holm C., J. Chem. Phys., 2021, 155, No. 20, 204501. DOI: https://doi.org/10.1063/5.0069340
Yang J., Kondrat S., Lian C., Liu H., Schlaich A., Holm C., Phys. Rev. Lett, 2023, 131, No. 11, 118201. DOI: https://doi.org/10.1103/PhysRevLett.131.118201
Jäger H., Schlaich A., Yang J., Lian C., Kondrat S., Holm C., Faraday Discuss., 2023, 246, 520–539. DOI: https://doi.org/10.1039/D3FD00043E
Krucker-Velasquez E., Swan J. W., J. Chem. Phys., 2021, 155, No. 13, 134903. DOI: https://doi.org/10.1063/5.0061230
Elliott G. R., Gregory K. P., Robertson H., Craig V. S., Webber G. B., Wanless E. J., Page A. J., Chem. Phys. Lett., 2024, 843, 141190. DOI: https://doi.org/10.1016/j.cplett.2024.141190
Dinpajooh M., Intan N. N., Duignan T. T., Biasin E., Fulton J. L., Kathmann S. M., Schenter G. K., Mundy C. J., J. Chem. Phys., 2024, 161, No. 23, 230901. DOI: https://doi.org/10.1063/5.0238708
Dinpajooh M., Biasin E., Nienhuis E. T., Mergelsberg S. T., Benmore C. J., Schenter G. K., Fulton J. L., Kathmann S. M., Mundy C. J., J. Chem. Phys., 2024, 161, 151102. DOI: https://doi.org/10.1063/5.0234518
Härtel A., Bültmann M., Coupette F., Phys. Rev. Lett., 2023, 130, No. 10, 108202. DOI: https://doi.org/10.1103/PhysRevLett.130.108202
Härtel A., Kjellander R., Preprint arXiv:2412.01653, 2024.
Kjellander R., Soft Matter, 2019, 15, 5866–5895.
Wang S., Tao H., Yang J., Cheng J., Liu H., Lian C., J. Phys. Chem. Lett., 2024, 33, 7147–7153. DOI: https://doi.org/10.1021/acs.jpclett.4c01698
Ciach A., Patsahan O., J. Mol. Liq., 2023, 377, 121453. DOI: https://doi.org/10.1016/j.molliq.2023.121453
Zubarev D., Dokl. Akad. Nauk SSSR, 1954, 95, 757–760, (in Russian).
Yukhnovskii I., Sov. Phys. JETP, 1958, 34, 263. DOI: https://doi.org/10.2307/2606818
Yukhnovskii I. R., Holovko M. F., Statistical Theory of Classical Equilibrium Systems, Naukova Dumka, Kiev, 1980, (in Russian).
Yukhnovskii I. R., Phase Transitions of the Second Order, Collective Variable Methods, World Scientific, Singapore, 1987. DOI: https://doi.org/10.1142/0289
Patsahan O., Mryglod I., J. Phys. A: Math. Gen., 2006, 39, No. 40, L583–L588. DOI: https://doi.org/10.1088/0305-4470/39/40/L02
Ciach A., Stell G., Int. J. Mod. Phys. B, 2005, 19, 3309–3343. DOI: https://doi.org/10.1142/S0217979205032176
Ciach A., Phys. Rev. E, 2008, 78, 061505. DOI: https://doi.org/10.1103/PhysRevE.78.021203
Ciach A., Mol. Phys., 2011, 109, 1101–1119. DOI: https://doi.org/10.1080/00268976.2010.548343
Ciach A., Soft Matter, 2018, 14, 5497–5508. DOI: https://doi.org/10.1039/C8SM00602D
Patsahan O., Meyra A., Ciach A., J. Mol. Liq., 2022, 363, 119844. DOI: https://doi.org/10.1016/j.molliq.2022.119844
Ciach A., Patsahan O., J. Phys.: Condens. Matter, 2021, 33, 37LT01. DOI: https://doi.org/10.1088/1361-648X/ac0f9e
Ciach A., Patsahan O., J. Mol. Liq., 2023, 382, 121949. DOI: https://doi.org/10.1016/j.molliq.2023.121949
Stillinger F. H., Lovett R., J. Chem. Phys., 1968, 48, 3858–3868. DOI: https://doi.org/10.1063/1.1669709
Ciach A., J. Mol. Liq., 2018, 270, 138–144. DOI: https://doi.org/10.1016/j.molliq.2017.10.002
Ciach A., Patsahan O., Phys. Chem. Chem. Phys, 2025, 27, 9143–9151. DOI: https://doi.org/10.1039/D4CP04669B
Boda D., Henderson D., Chan K.-Y., J. Chem. Phys., 1999, 5346–5350. DOI: https://doi.org/10.1063/1.478429
Di Caprio D., Valiskó M., Holovko M., Boda D., Mol. Phys., 2006, 104, No. 22–24, 3777–3786. DOI: https://doi.org/10.1080/00268970600976774
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 O. Patsahan, A. Ciach

This work is licensed under a Creative Commons Attribution 4.0 International License.