A consistent description of the kinetic processes of electrolyte ion transport in a dynamic  porous medium

Authors

DOI:

https://doi.org/10.5488/cmp.28.23501

Keywords:

kinetic and hydrodynamic processes, nonequilibrium statistical operator, ionic solution, porous medium, fractional calculus, diffusion

Abstract

The consistent description of kinetic and hydrodynamic processes is applied to the study of ion transport processes in the ionic solution-porous medium system.  A system of equations is obtained for the nonequilibrium single-ion distribution function, the nonequilibrium average value of the energy density of the interaction of solution ions, and the nonequilibrium average value of the number density of particles in a porous medium.  Using the fractional calculus technique, a generalized diffusion equation of the Cattaneo type in fractional derivatives is obtained to describe the processes of subdiffusion of particles in a porous medium.

References

Yukhnovskii I. R., Ukr. Fiz. Zh., 1959, 4, No. 2, 167–176, (in Russian).

Yukhnovskii I. R., Holovko M. F., Statistical Theory of Classical Equilibrium Systems, Kyiv, Naukova dumka, 1980, (in Russian).

Yukhnovskii I. R., Kuryliak I., Electrolites, Kiev, Naukova dumka, 1988, (in Russian).

Yukhnovskii I. R., Tokarchuk M. V., Hlushak P. A., Ukr. J. Phys., 2022, 67, No. 8, 579–591. DOI: https://doi.org/10.15407/ujpe67.8.579

Tokarchuk M. V., Ukr. Fiz. Zh., 1986, 50, No. 7, 1123–1131.

Zubarev D. N., Tokarchuk M. V., Theor. Math. Phys., 1987, 70, No. 2, 164–178. DOI: https://doi.org/10.1007/BF01039207

Yukhnovskii I. R., Zhelem R. I., Omelyan I. P., Sov’yak E. N., Tokarchuk M. V., Ukr. J. Fiz., 1996, 41, 819–827.

Yukhnovskii I. R., Tokarchuk M. V., Omelyan I. P., Zhelem R. I., Radiat. Phys. Chem., 2000, 59, No. 4, 361–375. DOI: https://doi.org/10.1016/S0969-806X(00)00278-4

Yukhnovskii I. R., Tokarchuk M. V., Zhelem R. I., Condens. Matter Phys., 1999, 2, No. 18, 351–360. DOI: https://doi.org/10.5488/CMP.2.2.351

Tokarchuk M. V., Markovych B. M., Zakharyash O. S., Ivankiv O. L., Mokhnyak S. M., Condens. Matter Phys., 2025, 28, No. 1, 11601. DOI: https://doi.org/10.5488/cmp.28.11601

Han G., Vasylenko A., Daniels L. M., Collins C. M., Corti L., Chen R., Niu H., Manning T. D., Antypov D., Dyer M. S., et al., Science, 2024, 383, 739–745. DOI: https://doi.org/10.1126/science.adh5115

Kondori A., Esmaeilirad M., Harzandi A. M., Amine R., Saray M. T., Yu L., Liu T., Wen J., Shan N., Wang H.-H., Ngo A. T., Redfern P. C., Johnson C. S., Amine K., Shahbazian-Yassar R., Curtiss L. A., Asadi M., Science, 2023, 379, 499–505. DOI: https://doi.org/10.1126/science.abq1347

Yu W., Shen Z., Yoshii T., Iwamura S., Ono M., Matsuda S., Aoki M., Kondo T., Mukai S. R., Nakanishi S., Nishihara H., Adv. Energy Mater., 2023, 14, No. 2, 2303055. DOI: https://doi.org/10.1002/aenm.202303055

Ding J., Du T., Thomsen E. H., Andresen D., Fischer M. R., Møller A. K., Petersen A. R., Pedersen A. K., Jensen L.R., Wang S., Smedskjaer M. M., Adv. Sci., 2024, 11, 2306698. DOI: https://doi.org/10.1002/advs.202306698

Biesheuvel P. M., Zhang L., Gasquet P., Blankert B., Elimelech M., van der Meer W. G. J., Environ. Sci. Technol. Lett., 2020, 7, No. 1, 42–47. DOI: https://doi.org/10.1021/acs.estlett.9b00686

Yang Z., Zhou Y., Feng Z., Rui X., Zhang T., Zhang Z., Polymers, 2019, 11, No. 8, 1252. DOI: https://doi.org/10.3390/polym11081252

Heiranian M., Fan H., Wang L., Lu X., Elimelech M., Chem. Soc. Rev., 2023, 52, 8455–8480. DOI: https://doi.org/10.1039/D3CS00395G

Fan H., Huang Y., Yip N. Y., Front. Environ. Sci. Eng., 2023, 17, No. 2, 25. DOI: https://doi.org/10.1007/s11783-023-1625-0

Miao J., Hu Q., Zhang Z., Hu Y., J. Membr. Sci., 2024, 697, 122578. DOI: https://doi.org/10.1016/j.memsci.2024.122578

Ye Z., Galvanetto N., Puppulin L., Pifferi S., Flechsig H., Arndt M., Trivino C. A. S., Di Palma M., Guo S., Vogel H., Menini A., Franz C. M., Torre V., Marchesi A., Nat. Commun., 2024, 15, 110. DOI: https://doi.org/10.1038/s41467-023-44377-7

Stabilini S., Menini A., Pifferi S., Int. J. Mol. Sci., 2021, 22, No. 16, 8578. DOI: https://doi.org/10.3390/ijms22168578

Su Y., Otake K. I., Zheng J. J., Xu H., Wang Q., Liu H., Gu C., Nat. Commun., 2024, 15, No. 1, 144. DOI: https://doi.org/10.1038/s41467-023-44424-3

Ferguson T. R., Bazant M. Z., J. Electrochem. Soc., 2012, 159, No. 12, A1967–A1985. DOI: https://doi.org/10.1149/2.048212jes

Kostrobij P. P., Markovych B. M., Tokarchuk R. M., Tokarchuk M. V., Chernomorets Yu. I., Math. Model. Comput., 2014, 1, No. 2, 178–194. DOI: https://doi.org/10.23939/mmc2014.02.178

Grygorchak I. I., Kostrobij P. P., Stasyuk I. V., Tokarchuk M. V., Velychko O. V., Ivashchyshyn F. O., Markovych B. M., Physical processes and their microscopic models in periodic inorganic/organic clathrates, Rastr-7, Lviv, 2015, (in Ukrainian).

Kostrobij P. P., Grygorchak I. I., Ivaschyshyn F. O., Markovych B. M., Viznovych O. V., Tokarchuk M. V., Math. Model. Comput., 2015, 2, No. 2, 154–159. DOI: https://doi.org/10.23939/mmc2015.02.154

Lin C., Wang B., Teo K. H., J. Appl. Phys., 2017, 121, 183101. DOI: https://doi.org/10.1063/1.4983021

Kostrobij P., Markovych B., Viznovych O., Tokarchuk M., Math. Model. Comput., 2016, 3, No. 2, 163–172. DOI: https://doi.org/10.23939/mmc2016.02.163

Kostrobij P., Grygorchak I., Ivashchyshyn F., Markovych B., Viznovych O., Tokarchuk M., J. Phys. Chem. A, 2018, 122, No. 16, 4099–4110. DOI: https://doi.org/10.1021/acs.jpca.8b00188

Tokarchuk M. V., Math. Model. Comput., 2024, 11, No. 4, 1013–1024. DOI: https://doi.org/10.23939/mmc2024.04.1013

Kobryn A. E., Morozov V. G., Omelyan I. P., Tokarchuk M. V., Physica A, 1996, 230, No. 1–2, 189–201. DOI: https://doi.org/10.1016/0378-4371(96)00044-1

Zubarev D. N., J. Math. Sci., 1981, 16, No. 6, 1509–1571. DOI: https://doi.org/10.1007/BF01091712

Zubarev D. N., Morozov V. G., Röpke G., Statistical Mechanics of Nonequilibrium Processes, Vol. 1, Fizmatlit, 2002, (in Russian).

Zubarev D. N., Morozov V. G., Röpke G., Statistical Mechanics of Nonequilibrium Processes, Vol. 2, Fizmatlit, 2002, (in Russian).

Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, 1993..

Oldham K. B., Spanier J., The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Dover Books on Mathematics, Dover Publications, 2006.

Sandev T., Metzler R., Chechkin A., Fract. Calc. Appl. Anal., 2018, 21, No. 1, 10–28. DOI: https://doi.org/10.1515/fca-2018-0002

Klapchuk M. I., Ivashchyshyn F. O., Math. Model. Comput., 2020, 7, 322–333. DOI: https://doi.org/10.23939/mmc2020.02.322

Kostrobij P. P., Ivashchyshyn F. O., Markovych B. M., Tokarchuk M. V., Math. Model. Comput., 2021, 8, 89–105. DOI: https://doi.org/10.23939/mmc2021.01.089

Zubarev D. N., Morozov V. G., Omelyan I. P., Tokarchuk M. V., Theor. Math. Phys., 1991, 87, 412–424. DOI: https://doi.org/10.1007/BF01016582

Zubarev D. N., Morozov V. G., Omelyan I. P., Tokarchuk M. V., Theor Math Phys., 1993, 96, 997–1012. DOI: https://doi.org/10.1007/BF01019063

Tokarchuk M. V., Omelyan I. P., Kobryn A. E., Condens. Matter Phys., 1998, 1, No. 4, 687–751. DOI: https://doi.org/10.5488/CMP.1.4.687

Tokarchuk M. V., Math. Model. Comput., 2022, 9, 440–458. DOI: https://doi.org/10.23939/mmc2022.02.440

Kostrobij P., Markovych B., Tokarchuk M., Ryzha I., J. Math. Phys., 2021, 62, 103304. DOI: https://doi.org/10.1063/5.0062443

Tarasov V. E., Chaos, 2004, 14, No. 1, 123–127. DOI: https://doi.org/10.1063/1.1633491

Tarasov V. E., J. Phys. Conf. Ser., 2005, 7, No. 1, 17–33. DOI: https://doi.org/10.1088/1742-6596/7/1/002

Tarasov V. E., Phys. Rev. E., 2005, 71, No. 1, 011102. DOI: https://doi.org/10.1103/PhysRevE.71.011102

Tarasov V. E., Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Nonlinear Physical Science, Springer, Berlin, Heidelberg, 2010. DOI: https://doi.org/10.1007/978-3-642-14003-7

Kostrobij P. P., Markovych B. M., Viznovych O. V., Tokarchuk M. V., Physica A, 2019, 513, 63–70. DOI: https://doi.org/10.1016/j.physa.2018.09.051

Published

2025-06-25

How to Cite

[1]
P. P. Kostrobij, B. M. Markovych, O. V. Viznovych, and M. V. Tokarchuk, “A consistent description of the kinetic processes of electrolyte ion transport in a dynamic  porous medium”, Condens. Matter Phys., vol. 28, no. 2, p. 23501, Jun. 2025, doi: 10.5488/cmp.28.23501.

Similar Articles

1-10 of 59

You may also start an advanced similarity search for this article.