The influence of dimensional crossover on phase transitions and critical phenomena in condensed systems
DOI:
https://doi.org/10.5488/cmp.28.33501Keywords:
dimensional crossover, critical exponents, bounded (confined) liquids, lower crossover dimensionality, fractal dimension, diffusion coefficientAbstract
This article is aimed at studying the effects of the dimensional crossover (DC) on physical properties of condensed systems near phase transition and critical points. Here we consider the following problems: (1) the theoretical provisions that allow to study the effect of spatial confinement on DC near phase transition and critical points; (2) the study of DC in condensed systems with the Ginzburg number Gi < 1, where fluctuation effects are described in different ways at the fluctuation, regular and intermediate (crossover) regions; (3) two types of DC were investigated: (a) a decrease in the linear dimensions L to the values of the correlation length of the order parameter fluctuations leads to the conversion of the dependence on thermodynamic variable into a dependence on linear sizes of 3D systems, as well as (b) a further decrease in linear sizes L the 3D–2D or 3D1D DC happens depending on slitlike or cylindrical geometry, which is determined by the value of the lower crossover dimensionality dLCD; (4) it is proposed to extend the known equalities for critical exponents by using the Mandelbrot formula for fractal dimension Df as a critical exponent; (5) the influence of 3D–2D DC on the characteristics of the fine structure of the molecular light scattering (MLS) spectrum is studied.References
Yukhnovskii I. R., Phase Transitions of the Second Order: Collective Variables Method, World Scientific, Singapore, 1987. DOI: https://doi.org/10.1142/0289
Yukhnovskii I. R., Holovko M. F., Statistical Theory of Classical Equilibrium Systems, Naukova Dumka, Kyiv, 1980, (in Russian).
Yukhnovskii I. R., Kozlovskii M. P., Pylyuk I. V., Microscopic Theory of Phase Transitions in the Three Dimensional Systems, Eurosvit, Lviv, 2001, (in Ukrainian).
Holovatch Yu. V. (Ed.), Order, Disorder and Criticality. Vol. 6. Advanced Problems of Phase Transitions Theory, World Scientific, 2020. DOI: https://doi.org/10.1142/11711
Lev B., Zagorodny A., Applications of Field Theory Methods in Statistical Physics of Nonequilibrium Systems, World Scientific, 2021. DOI: https://doi.org/10.1142/12091
Fisher M. E., In: Proceedings of the International School of Physics “Enrico Fermi”, Green M. S. (Ed.), Academic, New York, 1971.
Binder K., Annu. Rev. Phys. Chem., 1992, 43, 33–59. DOI: https://doi.org/10.1146/annurev.pc.43.100192.000341
Gelb L. D., Gubbins K. E., Radhakrishnan R., Sliwinska-Bartkowiak M., Rep. Prog. Phys., 1999, 62, 1573–1659. DOI: https://doi.org/10.1088/0034-4885/62/12/201
Kimball M. O., Mooney K. P., Gasparini F. M., Phys. Rev. Lett., 2004, 92, 115302. DOI: https://doi.org/10.1103/PhysRevLett.92.115301
Bulavin L. A., Chalyy K. O., Neutron Optics of Mesoscale Liquids, Naukova Dumka, Kyiv, 2006, (in Ukrainian).
Brovchenko I., Oleinikova A., Interfacial and Confined Water, Elsevier Science, 2008.
Chalyi A. V., In: Physics of Liquid Matter: Modern Problems, Bulavin L., Lebovka N. (Eds.), Springer International Publishing, Switzerland, 2015, 31–49.
Chalyi A. V., Bulavin L. A., Chekhun V. F., Chalyy K. A., Chernenko L. M., Vasilev A. N., Zaitseva E. V., Khrapijchuk G. V., Severin A. V., Kovalenko M. V., Condens. Matter Phys., 2013, 16, 23008. DOI: https://doi.org/10.5488/CMP.16.23008
Chalyi A. V., J. Mol. Liq., 2019, 288, 110873. DOI: https://doi.org/10.1016/j.molliq.2019.04.150
Chalyi A. V., In: Modern Problems of Molecular Physics, Bulavin L., Chalyi A. (Eds.), Springer International Publishing, Switzerland, 2018, 253–289. DOI: https://doi.org/10.1007/978-3-319-61109-9_12
Patashinskii A. Z., Pokrovskii V. L., The Fluctuation Theory of Phase Transitions, Pergamon Press, Oxford, 1979.
Anisimov M. A., Critical Phenomena in Liquids and Liquid Crystals, Gordon & Breach, Philadelphia, 1991.
Kadanoff L. P., Phys. Phys. Fiz., 1966, 2, 263–273.
Stanley H. E., Introduction to Phase Transitions and Critical Phenomena, Clarendon Press, Oxford, 1971.
Wilson K. G., Fisher M. E., Phys. Rev. Lett., 1972, 28, 240. DOI: https://doi.org/10.1002/phbl.19720280513
Chalyi A. V., What is Medicine? Basic Principles of Physics in Medicine and Beyond, Springer Nature, Switzerland, 2025. DOI: https://doi.org/10.1007/978-3-031-64979-0
Chalyi A. V., Lebed A. G., Non-Homogeneous Liquids Near the Critical Point and the Boundary of Stability and Theory of Percolation in Ceramics, Harwood Academic Publishers, UK, London, 1993.
Lakoza E. L., Sysoev V. M., Chalyi A. V., Zh. Eksp. Teor. Fiz., 1973, 65, 605–616.
Fisher M. E., de Gennes P. G., C. R. Acad. Sci. Paris. Ser. B, 1978, 287, 207–209.
Chalyi A. V., J. Mol. Liq., 1993, 58, 179–195. DOI: https://doi.org/10.1016/0167-7322(93)80066-5
Bulavin L. A., Chalyi A. V., Chalyy K. A., Chernenko L. M., Grechko L. G., Preprint of the Bogolyubov Institute for Theoretical Physics, ITP-93-158, Kyiv, 1993.
Chalyy K. A., Hamano K., Chalyi A. V., J. Mol. Liq., 2001, 92, 153–164. DOI: https://doi.org/10.1016/S0167-7322(01)00188-X
Boiko V. G., Moegel Kh. J., Sysoev V. M., Chalyi A. V., Sov. Phys. Usp., 1991, 34, 141. DOI: https://doi.org/10.1070/PU1991v034n02ABEH002341
Ehrenfest P., Collected Scientific Papers, Klein M. J. (Ed.), North-Holland Publishers, Amsterdam, 1959.
Onuki A., J. Chem. Phys., 1986, 85, 1122. DOI: https://doi.org/10.1063/1.451308
Chalyi O. V., Khrapiichuk G. V., Chernenko L. M., Chalyi K. O., Zaitseva O. V., Ukr. J. Phys., 2010, 55, 1111–1122.
Levanyuk A. P., Zh. Eksp. Teor. Fiz., 1959, 36, 571–576.
Ginzburg V. L., Sov. Phys. Solid State, 1960, 2, 1824–1834. DOI: https://doi.org/10.1070/PU1960v002n06ABEH003185
Sysoev V. M., Chalyi A. V., Theor. Math. Phys., 1976, 20, 126.
Fuentevilla D. A., Anisimov M. A., Phys. Rev. Lett., 2006, 97, 195702. DOI: https://doi.org/10.1103/PhysRevLett.97.195702
Bertrand C. E., Anisimov M. A., J. Phys. Chem. B, 2011, 115, 14099–14111. DOI: https://doi.org/10.1021/jp204011z
Holten V., Bertrand C. E., Anisimov M. A., Sengers J. V., J. Chem. Phys., 2012, 136, 094507. DOI: https://doi.org/10.1063/1.3690497
Chalyi A. V., Bulavin L. A., Chalyy K. O., In: Proceedings of the Bogolyubov Kyiv Conference “Modern Problems of Theoretical and Mathematical Physics” (Kyiv, 2024), Zagorodny A. G. (Ed.), Collections Scientific Works, Kyiv, 2024, 17–18.
Mandelbrot B. B., Fractals, Form, Chance and Dimension, Freaman and Company, New York, 1971.
Mandelbrot B. B., The Fractal Geometry of Nature, Freaman and Company, New York, 1982.
Smirnov B. M., Sov. Phys. Usp., 1986, 29, 481. DOI: https://doi.org/10.1070/PU1986v029n06ABEH003414
Losa G. A., Merlini D., Nonnenmacher T. F., Weibel E. R.(Eds.), Fractals in Biology and Medicine. Mathematics and Biosciences in Interaction, Birkhäuser Basel, 2005. DOI: https://doi.org/10.1007/3-7643-7412-8
Chalyi A. V., Fractal Fract., 2022, 6, 739. DOI: https://doi.org/10.3390/fractalfract6120739
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 O. V. Chalyi, E. V. Zaitseva

This work is licensed under a Creative Commons Attribution 4.0 International License.