Shape descriptors of equilibrium states in a quantum lattice model with local multi-well potentials: A geometric analysis near the phase transitions in Sn2P2S6 ferroelectric crystals

Authors

DOI:

https://doi.org/10.5488/cmp.28.43703

Keywords:

mean and Gaussian curvatures, curvedness, shape index, quantum lattice model, ferroelectric crystals, phase transitions

Abstract

We analyze the equilibrium states of quantum lattice model with local multi-well potentials for Sn2P2S6 ferroelectric crystals using the mean and Gaussian curvatures (H, K), curvedness (C) and shape index (S). From the energy gap, pressure and temperature variations of H, K, C and S, we have reported the geometric construction of the free energy surfaces for the ferroelectric and paraelectric phases. Their behaviors are explicitly observed near the ferroelectric-paraelectric phase transitions. It is found that H, C and S display a cusp singularity at the criticality while K converges to zero on both sides of the critical and tricritical points.

References

Xia K., Feng X., Chen Z., Tong Y.,Wei G.W., J. Comput. Phys., 2014, 257, 912. DOI: https://doi.org/10.1016/j.jcp.2013.09.034

Gupta S., Saxena A., J. Appl. Phys., 2011, 109, 074316. DOI: https://doi.org/10.1063/1.3553860

Gupta S., Saxena A., MRS Bull., 2014, 39, 265. DOI: https://doi.org/10.1557/mrs.2014.28

Gupta S., Saxena A. (Eds.), The Role of Topology in Materials, Springer Cham, 2018. DOI: https://doi.org/10.1007/978-3-319-76596-9

Gupta S., Saxena A., AIP Adv., 2019, 9, 085304. DOI: https://doi.org/10.1063/1.5106380

Koenderink J. J., van Doorn A. J., Image Vision Comput., 1992, 10, 557. DOI: https://doi.org/10.1016/0262-8856(92)90076-F

Norman J. F., Todd J. T., Norman H. F., Clayton A. M., McBride T. R., Vision Res., 2006 46, 1057. DOI: https://doi.org/10.1016/j.visres.2005.09.034

Hu H. H., Chen H. Y., Hung C. I, Guo W. Y., Wu Y. T., Brain Struct. Funct., 2013, 218, 1451. DOI: https://doi.org/10.1007/s00429-012-0469-3

Lefèvre J., Germanaud D., Dubois J., Rousseau F., de Macedo Santos I., Angleys H., Mangin J. F., Hüppi P. S., Girard N., De Guio F., Cereb. Cortex, 2016, 26, 3023. DOI: https://doi.org/10.1093/cercor/bhv123

Bendjebla S., Cai N., Anwer N., Lavernhe S., Mehdi-Souzani C., Procedia CIRP, 2018, 67, 482. DOI: https://doi.org/10.1016/j.procir.2017.12.248

Erdem R., Eur. Phys. J. Plus, 2023, 138, 306. DOI: https://doi.org/10.1140/epjp/s13360-023-03925-2

Eijt S.W. H., Currat R., Lorenzo J. E., Saint-Grégoire P., Katano S., Janssen T., Hennion B.,VysochanskiiYu. M., J. Phys.: Condens. Matter, 1998, 10, 4811. DOI: https://doi.org/10.1088/0953-8984/10/22/008

Eijt S. W. H., Currat R., Lorenzo J. E., Saint-Grégoire P., Hennion B., Vysochanskii Yu. M., Eur. Phys. J. B, 1998, 5, 169. DOI: https://doi.org/10.1007/s100510050431

Gasgnier M., Szwarc H., Petit A., Mater. Res. Bull., 2003, 38, 1681. DOI: https://doi.org/10.1016/j.materresbull.2003.07.004

Yevych R. M., Vysochanskii Yu. M., Ferroelectrics, 2011, 412, 38. DOI: https://doi.org/10.1080/00150193.2011.542693

Bilanych R. M., Yevych R. M., Kohutych A. A., Perechinskii S. I., Stoika I. M., Vysochanskii Yu. M., Cent. Eur. J. Phys., 2014, 12, 611. DOI: https://doi.org/10.2478/s11534-014-0514-3

Rushchanskii K. Z., Bilanych R. M., Molnar A. A., Yevych R. M., Kohutych A. A., Perechinskii S. I., Samulionis V., Banys J., Vysochanskii Yu. M., Phys. Status Solidi B, 2016, 253, 384. DOI: https://doi.org/10.1002/pssb.201552138

Velychko O. V., Stasyuk I. V., Phase Transitions, 2019, 92, 420. DOI: https://doi.org/10.1080/01411594.2019.1582051

Erdem R., Physica A, 2020, 556, 124837. DOI: https://doi.org/10.1016/j.physa.2020.124837

Erdem R., Özüm S., Güçlü N., Condens. Matter Phys., 2022, 25, 43707. DOI: https://doi.org/10.5488/CMP.25.43707

Matsuyama K., Shimizu T., Kato T., Entropy, 2023, 25, 624. DOI: https://doi.org/10.3390/e25040624

Vezzetti E., Marcolin F., Multimed. Tools Appl., 2014, 68, 895-929. DOI: https://doi.org/10.1007/s11042-012-1091-3

Zhou S., You L., Zhou H., Pu Y., Gui Z., Wang J., Front. Phys., 2021, 16, 13301. DOI: https://doi.org/10.1007/s11467-020-0986-0

Temirci C., Kökçe A., Keskin M., Physica A, 1996, 231, 673-686. DOI: https://doi.org/10.1016/0378-4371(96)00094-5

Keskin M., Ekiz C., Yalçın O., Physica A, 1999, 267, 392-405. DOI: https://doi.org/10.1016/S0378-4371(98)00666-9

Ekiz C., Keskin M., Yalçın O., Physica A, 2001, 293, 215-232. DOI: https://doi.org/10.1016/S0378-4371(00)00595-1

Published

2025-12-22

Issue

Section

Articles

Categories

How to Cite

[1]
S. Özüm, T. Akkurt, R. Erdem, and N. Güçlü, “Shape descriptors of equilibrium states in a quantum lattice model with local multi-well potentials: A geometric analysis near the phase transitions in Sn2P2S6 ferroelectric crystals”, Condens. Matter Phys., vol. 28, no. 4, p. 43703, Dec. 2025, doi: 10.5488/cmp.28.43703.

Similar Articles

1-10 of 84

You may also start an advanced similarity search for this article.