Three-dimensional unfrustrated and frustrated quantum Heisenberg magnets. Specific heat study

Authors

DOI:

https://doi.org/10.5488/cmp.28.43502

Keywords:

quantum Heisenberg spin model, geometrically frustrated lattices

Abstract

We examine the S = 1/2 Heisenberg magnet on four three-dimensional lattices — simple-cubic, diamond, pyrochlore, and hyperkagome ones — for ferromagnetic and antiferromagnetic signs of the exchange interaction in order to illustrate the effect of lattice geometry on the finite-temperature thermodynamic properties with a focus on the specific heat c(T). To this end, we use quantum Monte Carlo simulations or high-temperature expansion series complemented with the entropy method. We also discuss a recent proposal about hidden energy scale in geometrically frustrated magnets.

References

Born M., Atomic Physics, Dover Publications, 2013.

Vakarchuk I. O., Quantum Mechanics, Ivan Franko National University of Lviv, Lviv, 2012 (in Ukrainian).

Duncan A., Janssen M., Constructing Quantum Mechanics, Oxford University Press, 2019. DOI: https://doi.org/10.1093/oso/9780198845478.001.0001

Onsager L., Phys. Rev., 1944, 65, 117–149. DOI: https://doi.org/10.1103/PhysRev.65.117

Strečka J., Jaščur M., Acta Phys. Slovaca, 2015, 65, 235–367.

Wannier G. H., Phys. Rev., 1950, 79, 357–364. DOI: https://doi.org/10.1103/PhysRev.79.357

Wannier G. H., Phys. Rev. B, 1973, 7, 5017–5017. DOI: https://doi.org/10.1103/PhysRevB.7.5017

Popp P., Ramirez A. P., Syzranov S., Phys. Rev. Lett., 2025, 134, 226701. DOI: https://doi.org/10.1103/PhysRevLett.134.226701

Ramirez A. P., Syzranov S. V., Mater. Adv., 2025, 6, 1213–1229. DOI: https://doi.org/10.1039/D4MA00914B

Albuquerque A., Alet F., Corboz P., Dayal P., Feiguin A., Fuchs S., Gamper L., Gull E., Gürtler S., Honecker A., et al., J. Magn. Magn. Mater., 2007, 310, No. 2, 1187–1193. DOI: https://doi.org/10.1016/j.jmmm.2006.10.304

Bauer B., Carr L. D., Evertz H. G., Feiguin A., Freire J., Fuchs S., Gamper L., Gukelberger J., Gull E., Guertler S., et al., J. Stat. Mech.: Theory Exp., 2011, 2011, No. 05, P05001. DOI: https://doi.org/10.1088/1742-5468/2011/05/P05001

Pierre L., Bernu B., Messio L., SciPost Phys., 2024, 17, 105. DOI: https://doi.org/10.21468/SciPostPhys.17.4.105

Müller-Krumbhaar H., Simulation of Small Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 1986, 195–223. DOI: https://doi.org/10.1007/978-3-642-82803-4_5

Binder K., Wang J. S., J. Stat. Phys., 1989, 55, 87. DOI: https://doi.org/10.1007/BF01042592

Derzhko O., Hutak T., Krokhmalskii T., Schnack J., Richter J., Phys. Rev. B, 2020, 101, 174426. DOI: https://doi.org/10.1103/PhysRevB.101.174426

Gonzalez M. G., Bernu B., Pierre L., Messio L., Phys. Rev. B, 2023, 107, 235151. DOI: https://doi.org/10.1103/PhysRevB.107.235151

Singh R. R. P., Oitmaa J., Phys. Rev. B, 2012, 85, 104406. DOI: https://doi.org/10.1103/PhysRevB.85.144414

Bernu B., Misguich G., Phys. Rev. B, 2001, 63, 134409. DOI: https://doi.org/10.1103/PhysRevB.63.134409

Misguich G., Bernu B., Phys. Rev. B, 2005, 71, 014417.

Bernu B., Lhuillier C., Phys. Rev. Lett., 2015, 114, 057201. DOI: https://doi.org/10.1103/PhysRevLett.114.057201

Bernu B., Pierre L., Essafi K., Messio L., Phys. Rev. B, 2020, 101, 140403. DOI: https://doi.org/10.1103/PhysRevB.101.140403

Hutak T., Krokhmalskii T., Schnack J., Richter J., Derzhko O., Phys. Rev. B, 2024, 110, 054428. DOI: https://doi.org/10.1103/PhysRevB.110.054428

Hagymási I., Schäfer R., Moessner R., Luitz D. J., Phys. Rev. Lett., 2021, 126, 117204. DOI: https://doi.org/10.1103/PhysRevLett.126.117204

Astrakhantsev N., Westerhout T., Tiwari A., Choo K., Chen A., Fischer M. H., Carleo G., Neupert T., Phys. Rev. X, 2021, 11, 041021. DOI: https://doi.org/10.1103/PhysRevX.11.041021

Kivelson S. A., Jiang J. M., Chang J., Statistical Mechanics of Phases and Phase Transitions, Princeton University Press, 2024.

Wessel S., Phys. Rev. B, 2010, 81, 052405. DOI: https://doi.org/10.1103/PhysRevB.81.052405

Oitmaa J., J. Phys.: Condens. Matter, 2018, 30, No. 15, 155801. DOI: https://doi.org/10.1088/1361-648X/aab22c

Kuz’min M. D., Philos. Mag. Lett., 2019, 99, No. 9, 338–350. DOI: https://doi.org/10.1080/09500839.2019.1692156

Bärwolf R., Sushchyev A., Parisen Toldin F., Wessel S., Phys. Rev. B, 2025, 111, 085136. DOI: https://doi.org/10.1103/PhysRevB.111.085136

Müller P., Lohmann A., Richter J., Menchyshyn O., Derzhko O., Phys. Rev. B, 2017, 96, 174419. DOI: https://doi.org/10.1103/PhysRevB.96.174419

Parymuda M., Krokhmalskii T., Derzhko O., Preprint of the Institute for Condensed Matter Physics, ICMP–24–03E, Lviv, 2024.

Parymuda M., Krokhmalskii T., Derzhko O., J. Phys.: Condens. Matter, 2025, 37, No. 33, 335801. DOI: https://doi.org/10.1088/1361-648X/adf67d

Oitmaa J., Zheng W., J. Phys.: Condens. Matter, 2004, 16, No. 47, 8653. DOI: https://doi.org/10.1088/0953-8984/16/47/016

Hering M., Noculak V., Ferrari F., Iqbal Y., Reuther J., Phys. Rev. B, 2022, 105, 054426. DOI: https://doi.org/10.1103/PhysRevB.105.054426

Schäfer R., Hagymási I., Moessner R., Luitz D. J., Phys. Rev. B, 2020, 102, 054408. DOI: https://doi.org/10.1103/PhysRevB.102.054408

Kanô K., Naya S., Prog. Theor. Phys., 1953, 10, No. 2, 158–172. DOI: https://doi.org/10.1143/PTP.10.158

Anderson P. W., Phys. Rev., 1956, 102, 1008–1013. DOI: https://doi.org/10.1103/PhysRev.102.1008

Yoshioka T., Koga A., Kawakami N., J. Phys. Soc. Jpn., 2004, 73, No. 7, 1805–1811. DOI: https://doi.org/10.1143/JPSJ.73.1805

Schnack J., Schulenburg J., Richter J., Phys. Rev. B, 2018, 98, 094423. DOI: https://doi.org/10.1103/PhysRevB.98.094423

Bramwell S. T., Harris M. J., J. Phys.: Condens. Matter, 1998, 10, No. 14, L215. DOI: https://doi.org/10.1088/0953-8984/10/14/002

Pohle R., Jaubert L. D. C., Phys. Rev. B, 2023, 108, 024411. DOI: https://doi.org/10.1103/PhysRevB.108.024411

Published

2025-12-22

Issue

Section

Сollection of the articles dedicated to the 100th anniversary of Prof. Ihor Yukhnovskii

Categories

How to Cite

[1]
T. Krokhmalskii, T. Hutak, and O. Derzhko, “Three-dimensional unfrustrated and frustrated quantum Heisenberg magnets. Specific heat study”, Condens. Matter Phys., vol. 28, no. 4, p. 43502, Dec. 2025, doi: 10.5488/cmp.28.43502.

Similar Articles

1-10 of 83

You may also start an advanced similarity search for this article.