Three-dimensional unfrustrated and frustrated quantum Heisenberg magnets. Specific heat study
DOI:
https://doi.org/10.5488/cmp.28.43502Keywords:
quantum Heisenberg spin model, geometrically frustrated latticesAbstract
We examine the S = 1/2 Heisenberg magnet on four three-dimensional lattices — simple-cubic, diamond, pyrochlore, and hyperkagome ones — for ferromagnetic and antiferromagnetic signs of the exchange interaction in order to illustrate the effect of lattice geometry on the finite-temperature thermodynamic properties with a focus on the specific heat c(T). To this end, we use quantum Monte Carlo simulations or high-temperature expansion series complemented with the entropy method. We also discuss a recent proposal about hidden energy scale in geometrically frustrated magnets.
References
Born M., Atomic Physics, Dover Publications, 2013.
Vakarchuk I. O., Quantum Mechanics, Ivan Franko National University of Lviv, Lviv, 2012 (in Ukrainian).
Duncan A., Janssen M., Constructing Quantum Mechanics, Oxford University Press, 2019. DOI: https://doi.org/10.1093/oso/9780198845478.001.0001
Onsager L., Phys. Rev., 1944, 65, 117–149. DOI: https://doi.org/10.1103/PhysRev.65.117
Strečka J., Jaščur M., Acta Phys. Slovaca, 2015, 65, 235–367.
Wannier G. H., Phys. Rev., 1950, 79, 357–364. DOI: https://doi.org/10.1103/PhysRev.79.357
Wannier G. H., Phys. Rev. B, 1973, 7, 5017–5017. DOI: https://doi.org/10.1103/PhysRevB.7.5017
Popp P., Ramirez A. P., Syzranov S., Phys. Rev. Lett., 2025, 134, 226701. DOI: https://doi.org/10.1103/PhysRevLett.134.226701
Ramirez A. P., Syzranov S. V., Mater. Adv., 2025, 6, 1213–1229. DOI: https://doi.org/10.1039/D4MA00914B
Albuquerque A., Alet F., Corboz P., Dayal P., Feiguin A., Fuchs S., Gamper L., Gull E., Gürtler S., Honecker A., et al., J. Magn. Magn. Mater., 2007, 310, No. 2, 1187–1193. DOI: https://doi.org/10.1016/j.jmmm.2006.10.304
Bauer B., Carr L. D., Evertz H. G., Feiguin A., Freire J., Fuchs S., Gamper L., Gukelberger J., Gull E., Guertler S., et al., J. Stat. Mech.: Theory Exp., 2011, 2011, No. 05, P05001. DOI: https://doi.org/10.1088/1742-5468/2011/05/P05001
Pierre L., Bernu B., Messio L., SciPost Phys., 2024, 17, 105. DOI: https://doi.org/10.21468/SciPostPhys.17.4.105
Müller-Krumbhaar H., Simulation of Small Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 1986, 195–223. DOI: https://doi.org/10.1007/978-3-642-82803-4_5
Binder K., Wang J. S., J. Stat. Phys., 1989, 55, 87. DOI: https://doi.org/10.1007/BF01042592
Derzhko O., Hutak T., Krokhmalskii T., Schnack J., Richter J., Phys. Rev. B, 2020, 101, 174426. DOI: https://doi.org/10.1103/PhysRevB.101.174426
Gonzalez M. G., Bernu B., Pierre L., Messio L., Phys. Rev. B, 2023, 107, 235151. DOI: https://doi.org/10.1103/PhysRevB.107.235151
Singh R. R. P., Oitmaa J., Phys. Rev. B, 2012, 85, 104406. DOI: https://doi.org/10.1103/PhysRevB.85.144414
Bernu B., Misguich G., Phys. Rev. B, 2001, 63, 134409. DOI: https://doi.org/10.1103/PhysRevB.63.134409
Misguich G., Bernu B., Phys. Rev. B, 2005, 71, 014417.
Bernu B., Lhuillier C., Phys. Rev. Lett., 2015, 114, 057201. DOI: https://doi.org/10.1103/PhysRevLett.114.057201
Bernu B., Pierre L., Essafi K., Messio L., Phys. Rev. B, 2020, 101, 140403. DOI: https://doi.org/10.1103/PhysRevB.101.140403
Hutak T., Krokhmalskii T., Schnack J., Richter J., Derzhko O., Phys. Rev. B, 2024, 110, 054428. DOI: https://doi.org/10.1103/PhysRevB.110.054428
Hagymási I., Schäfer R., Moessner R., Luitz D. J., Phys. Rev. Lett., 2021, 126, 117204. DOI: https://doi.org/10.1103/PhysRevLett.126.117204
Astrakhantsev N., Westerhout T., Tiwari A., Choo K., Chen A., Fischer M. H., Carleo G., Neupert T., Phys. Rev. X, 2021, 11, 041021. DOI: https://doi.org/10.1103/PhysRevX.11.041021
Kivelson S. A., Jiang J. M., Chang J., Statistical Mechanics of Phases and Phase Transitions, Princeton University Press, 2024.
Wessel S., Phys. Rev. B, 2010, 81, 052405. DOI: https://doi.org/10.1103/PhysRevB.81.052405
Oitmaa J., J. Phys.: Condens. Matter, 2018, 30, No. 15, 155801. DOI: https://doi.org/10.1088/1361-648X/aab22c
Kuz’min M. D., Philos. Mag. Lett., 2019, 99, No. 9, 338–350. DOI: https://doi.org/10.1080/09500839.2019.1692156
Bärwolf R., Sushchyev A., Parisen Toldin F., Wessel S., Phys. Rev. B, 2025, 111, 085136. DOI: https://doi.org/10.1103/PhysRevB.111.085136
Müller P., Lohmann A., Richter J., Menchyshyn O., Derzhko O., Phys. Rev. B, 2017, 96, 174419. DOI: https://doi.org/10.1103/PhysRevB.96.174419
Parymuda M., Krokhmalskii T., Derzhko O., Preprint of the Institute for Condensed Matter Physics, ICMP–24–03E, Lviv, 2024.
Parymuda M., Krokhmalskii T., Derzhko O., J. Phys.: Condens. Matter, 2025, 37, No. 33, 335801. DOI: https://doi.org/10.1088/1361-648X/adf67d
Oitmaa J., Zheng W., J. Phys.: Condens. Matter, 2004, 16, No. 47, 8653. DOI: https://doi.org/10.1088/0953-8984/16/47/016
Hering M., Noculak V., Ferrari F., Iqbal Y., Reuther J., Phys. Rev. B, 2022, 105, 054426. DOI: https://doi.org/10.1103/PhysRevB.105.054426
Schäfer R., Hagymási I., Moessner R., Luitz D. J., Phys. Rev. B, 2020, 102, 054408. DOI: https://doi.org/10.1103/PhysRevB.102.054408
Kanô K., Naya S., Prog. Theor. Phys., 1953, 10, No. 2, 158–172. DOI: https://doi.org/10.1143/PTP.10.158
Anderson P. W., Phys. Rev., 1956, 102, 1008–1013. DOI: https://doi.org/10.1103/PhysRev.102.1008
Yoshioka T., Koga A., Kawakami N., J. Phys. Soc. Jpn., 2004, 73, No. 7, 1805–1811. DOI: https://doi.org/10.1143/JPSJ.73.1805
Schnack J., Schulenburg J., Richter J., Phys. Rev. B, 2018, 98, 094423. DOI: https://doi.org/10.1103/PhysRevB.98.094423
Bramwell S. T., Harris M. J., J. Phys.: Condens. Matter, 1998, 10, No. 14, L215. DOI: https://doi.org/10.1088/0953-8984/10/14/002
Pohle R., Jaubert L. D. C., Phys. Rev. B, 2023, 108, 024411. DOI: https://doi.org/10.1103/PhysRevB.108.024411
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 T. Krokhmalskii, T. Hutak, O. Derzhko

This work is licensed under a Creative Commons Attribution 4.0 International License.







