Link of the Zitterbewegung with the spin conductivity and the spin-textures of multiband systems
DOI:
https://doi.org/10.5488/cmp.28.43704Keywords:
spin-orbit, 2DEGs, spin hall effect, spin conductivity, spin transportAbstract
The Zitterbewegung phenomenon in multiband electronic systems is known to be subtly related to the charge conductivity, Berry curvature and the Chern number. Here we show that some spin-dependent properties as the optical spin conductivity and intrinsic spin Hall conductivity are also entangled with the Zitterbewegung amplitudes. We also show that in multiband Dirac-type Hamiltonians, a direct link between the Zitterbewegung and the spin textures and spin transition amplitudes can be established. The later allow us to discern the presence or not of the Zitterbewegung oscillations by simply analyzing the spin or pseudospin textures. We provide examples of the applicability of our approach for Hamiltonian models that show the suppression of specific Zitterbewegung oscillations.
References
Schrödinger E., Sitzungsber. Preuss. Akad. Wiss., Phys. Math Kl., 1930, 24, 418.
Dávid G., Cserti J., Phys. Rev. B, 2010, 81, 121417. DOI: https://doi.org/10.1103/PhysRevB.81.121417
Cserti J., Dávid G., Phys. Rev. B, 2010, 82, 201405(R). DOI: https://doi.org/10.1103/PhysRevB.82.201405
Lurié D., Cremer S., Physica, 1970, 50, 224. DOI: https://doi.org/10.1016/0031-8914(70)90004-2
Cannata F., Ferrari L., Russo G., Solid State Commun., 1990, 74, 309. DOI: https://doi.org/10.1016/0038-1098(90)90192-E
Zutić J., Fabian J., Das Sarma S., Rev. Mod. Phys., 2004, 76, 323. DOI: https://doi.org/10.1103/RevModPhys.76.323
Hirohata A., Yamada K., Nakatani Y., Prejbeanu I.-L., Diény B., Pirro Ph., Hillebrands B., J. Magn. Magn. Mater., 2020, 509, 166711. DOI: https://doi.org/10.1016/j.jmmm.2020.166711
Schliemann J., Loss D., Westervelt R. M., Phys. Rev. Lett., 2005, 94, 206801. DOI: https://doi.org/10.1103/PhysRevLett.94.206801
Jiang Z. F., Li R. D., Zhang S.-C., Liu W. M., Phys. Rev. B, 2005, 72, 045201. DOI: https://doi.org/10.1103/PhysRevB.72.045201
Zawadzki W., Phys. Rev. B, 2005, 72, 085217. DOI: https://doi.org/10.1103/PhysRevB.72.085217
Gerritsma R., Kirchmair G., Zähringer F., Solano E., Blatt R., Roos C. F., Nature, 2010, 463, 68. DOI: https://doi.org/10.1038/nature08688
LeBlanc L. J., Beeler M. C., Jiménez-García K., Perry A. R., Sugawa S., Williams R. A., Spielman I. B., New J. Phys., 2013, 15, 073011. DOI: https://doi.org/10.1088/1367-2630/15/7/073011
Qu C., Hamner C., Gong M., Zhang C., Engels P., Phys. Rev. A, 2013, 88, 021604. DOI: https://doi.org/10.1103/PhysRevA.88.021604
Silva T. L., Taillebois E. R. F., Gomes R. M., Walborn S. P., Avelar A. T., Phys. Rev. A, 2019, 99, 022332. DOI: https://doi.org/10.1103/PhysRevA.99.022332
Wen W., Liang J., Xu H., Jin F., Rubo Yu. G., Liew T. C. H., Su R., Phys. Rev. Lett. 2024, 133, 116903. DOI: https://doi.org/10.1103/PhysRevLett.133.116903
Maksimova G. M., Demikhovskii V. Y., Frolova E.V., Phys. Rev. B, 2008, 78, 235321. DOI: https://doi.org/10.1103/PhysRevB.78.235321
Rusin T. M., Zawadzki W., Phys. Rev. B, 2007, 76, 195439. DOI: https://doi.org/10.1103/PhysRevB.76.195439
Rusin T. M., Zawadzki W., Phys. Rev. B, 2008, 78, 125419. DOI: https://doi.org/10.1103/PhysRevB.78.125419
Carrillo Bastos R., Ochoa M, Zavala S. A., Mireles F., Phys. Rev. B, 2018, 98, 165436. DOI: https://doi.org/10.1103/PhysRevB.98.165436
Santacruz A., Iglesias P. E., Carrillo Bastos R., Mireles F., Phys. Rev. B, 2022, 105, 205405. DOI: https://doi.org/10.1103/PhysRevB.105.205405
Cunha S. M., da Costa D. R., de Sousa G. O., Chaves A., Milton Pereira, Jr. J., Farias G. A., Phys. Rev. B, 2019.
Romera E., Roldán J., de los Santos F., Phys. Lett. A, 2014, 378, 2582. DOI: https://doi.org/10.1016/j.physleta.2014.06.040
Szafran B., Rzeszotarski B., Mreńca-Kolasińska A., Phys. Rev. B, 2019, 100, 085306. DOI: https://doi.org/10.1103/PhysRevB.100.085306
Hassan A. M., Rashid S., Manzoor K., Riaz N., Ali H., Ullah A., Imtiaz Khan M., Phys. Lett. A, 2025, 552, 130655. DOI: https://doi.org/10.1016/j.physleta.2025.130655
Yar A., Ilyas A., J. Phys. Soc. Jpn., 2020, 89, 124705. DOI: https://doi.org/10.7566/JPSJ.89.124705
Biswas T., Ghosh T. K., J. Phys.: Condens. Matter, 2018, 30, 075301. DOI: https://doi.org/10.1088/1361-648X/aaa60b
Demikhovskii V. Y., Telezhnikov A., JETP Lett., 2014, 99, 104. DOI: https://doi.org/10.1134/S0021364014020064
Ferreira G. F., Maciel R. P., Penteado P. H., Egues J. C., Phys. Rev. B, 2018, 98, 165120. DOI: https://doi.org/10.1103/PhysRevB.98.165120
Yar A., Naeem M., Khan S. U., Sabeeh K., J. Phys.: Condens. Matter, 2017, 29, 465002. DOI: https://doi.org/10.1088/1361-648X/aa801a
Lavor L. R., da Costa D. R., Covaci L., Milošević M. V., Peeters F. M., Chaves A., Phys. Rev. Lett., 2021, 127, 1068011. DOI: https://doi.org/10.1103/PhysRevLett.127.106801
Berry M. V., Proc. R. Soc. London, Ser. A, 1984, 392, 45. DOI: https://doi.org/10.1098/rspa.1984.0023
Rashba E. I., Sov. Phys.-Solid State, 1960, 2, 1109.
Bychkov Y. A., Rashba E. I., J. Phys. C: Solid State Phys., 1984, 17, 6039. DOI: https://doi.org/10.1088/0022-3719/17/33/015
Santana Suaréz E., Mireles F., Condens. Matter Phys., 2023, 26, No. 1, 13504. DOI: https://doi.org/10.5488/CMP.26.13504
Bercioux D., Lucignano P., Rep. Prog. Phys., 2015, 78, 106001. DOI: https://doi.org/10.1088/0034-4885/78/10/106001
Dresselhaus G., Phys. Rev., 1955, 100, 580. DOI: https://doi.org/10.1103/PhysRev.100.580
Luttinger J. M., Phys. Rev., 1956, 102, 1030. DOI: https://doi.org/10.1103/PhysRev.102.1030
Wong A., Mireles F., Phys. Rev. B, 2010, 81, 085304. DOI: https://doi.org/10.1103/PhysRevB.81.085304
Bernevig B. A., Phys. Rev. B, 2005, 71, 073201. DOI: https://doi.org/10.1103/PhysRevB.71.035303
Gamayun O. V., Ostroukh V. P., Gnezdilov N. V., Adagideli I., Beenakker C. W. J., New J. Phys., 2018, 20, 023016. DOI: https://doi.org/10.1088/1367-2630/aaa7e5
Herrera S. A., Naumis G. G., Phys. Rev. B, 2020, 101, 205413. DOI: https://doi.org/10.1103/PhysRevB.101.205413
Raoux A., Morigi M., Fuchs J.-N., Piechon F., Montambaux G., Phys. Rev. Lett., 2014 112, 026402. DOI: https://doi.org/10.1103/PhysRevLett.112.026402
Sutherland B., Phys. Rev. B, 1986, 34, 5208. DOI: https://doi.org/10.1103/PhysRevB.34.5208
Bercioux D., Urban D. F., Grabert H., Häusler W., Phys. Rev. A, 2009, 80, 063603. DOI: https://doi.org/10.1103/PhysRevA.80.063603
Katsnelson M. I., Eur. Phys. J. B, 2006, 51, 157. DOI: https://doi.org/10.1140/epjb/e2006-00203-1
Shen. X., Zhu Y. Q., Li Z., Phys. Rev. B, 2022, 106, L180301. DOI: https://doi.org/10.1103/PhysRevB.106.L180301
Marder M., Condensed Matter Physics, John Wiley and Sons, Inc., New York, 2000.
Guo G. Y., Murakami S., Chen T.-W., Nagaosa N., Phys. Rev. Lett. 2008, 100, 096401. DOI: https://doi.org/10.1103/PhysRevLett.100.096401
Feng W., Liu C.-C., Liu G.-B., Zhou J.-J., Yao Y., Comput. Mater. Sci., 2016, 112, 428–447. DOI: https://doi.org/10.1016/j.commatsci.2015.09.020
Oriekhov D. O., Gusynin V. P., Phys. Rev. B, 2022, 106, 115143. DOI: https://doi.org/10.1103/PhysRevB.106.235413
Illes E., Carbotte J. P., Nicol E. J., Phys. Rev. B, 2015, 92, 245410. DOI: https://doi.org/10.1103/PhysRevB.92.245410
Downloads
Published
License
Copyright (c) 2025 F. Mireles, E. Ortiz

This work is licensed under a Creative Commons Attribution 4.0 International License.







