Beyond conventional half-metals: gapless states and spin gapless semiconducting behavior in X2MnGa (X =Ti, Ir) Heusler compounds

Authors

DOI:

https://doi.org/10.5488/cmp.28.33702

Keywords:

Heusler alloys, spintronics, DFT+U, spin gapless semiconductors, half-metals, magnetic materials

Abstract

The search for high-performance spintronic materials motivates the exploration of Heusler alloys with unconventional electronic properties. Using density functional theory with Hubbard correction (DFT+U, U = 4 eV), we investigate X2MnGa (X = Ti, Ir) alloys, which stabilize in the ferromagnetic L21-type structure with strong thermodynamic stability. Electronic structure calculations reveal contrasting behaviors: Ti2MnGa transitions from a metallic L21-type phase to a spin gapless semiconductor (SGS) in the XA-type, while Ir2MnGa exhibits gapless half-metallicity behavior in the L21-type but becomes half-metallic in the XA-type. The magnetic properties are governed by spd hybridization between Mn-3d and X-d/Ga-p states, which stabilizes ferromagnetism and tailors electronic states near the Fermi level. The Hubbard U correction proves essential for accurately describing the correlated Mn-3d electrons. These alloys combine structural stability with tunable electronic and magnetic properties, offering a promising platform for spin-polarized transport in next-generation spintronic devices.

References

Palmstrøm C. J., Prog. Cryst. Growth Charact. Mater., 2016, 62, 371–397. DOI: https://doi.org/10.1016/j.pcrysgrow.2016.04.020

Chatterjee S., Chatterjee S., Giri S., Majumdar S., J. Phys.: Condens. Matter, 2022, 34, 013001. DOI: https://doi.org/10.1088/1361-648X/ac268c

Graf T., Felser C., Parkin S. S. P., In: Handbook of Spintronics, Xu Y., Awschalom D., Nitta J. (Eds.), Springer, Dordrecht, 2016, 335–364. DOI: https://doi.org/10.1007/978-94-007-6892-5_17

Elphick K., Frost W., Samiepour M., Kubota T., Takanashi K., Sukegawa H., Mitani S., Hirohata A., Sci. Technol. Adv. Mater., 2021, 22, 235–271. DOI: https://doi.org/10.1080/14686996.2020.1812364

Hirohata A., Lloyd D. C., MRS Bull., 2022, 47, 593–599. DOI: https://doi.org/10.1557/s43577-022-00350-1

Galanakis I., In: Heusler Alloys, Vol. 222, Felser C., Hirohata A. (Eds.), Springer, Cham, 2016, 3–36. DOI: https://doi.org/10.1007/978-3-319-21449-8_1

Gao G., Yao K., Appl. Phys. Lett., 2013, 103, 232409.

Galanakis I., Özdoğan K., Aktaş B., Şaşioğlu E., Appl. Phys. Lett., 2006, 89, 042502. DOI: https://doi.org/10.1063/1.2235913

Skaftouros S., Özdoğan K., Şaşioğlu E., Galanakis I., Appl. Phys. Lett., 2013, 102, 022402. DOI: https://doi.org/10.1063/1.4775599

Wang X., Cheng Z., Wang J., Wang X., Liu G., J. Mater. Chem. C, 2016, 4, 7176–7192. DOI: https://doi.org/10.1039/C6TC01343K

Zhang Y. J., Liu Z. H., Liu E. K., Liu G. D., Ma X. Q., Wu G. H., Europhys. Lett., 2015, 111, 37009. DOI: https://doi.org/10.1209/0295-5075/111/37009

Amrich O., Monir M. E. A., Baltach H., Omran S., Sun X.,Wang X., Al-Douri Y., Bouhemadou A., Khenata R., J. Supercond. Novel Magn., 2018, 31, 241–250. DOI: https://doi.org/10.1007/s10948-017-4206-2

Ahmed S., Zafar M., Rizwan M., Khan M. I., Arshad H., Jin H., Shabbir M., Al-Sehemi A. G., Shakil M., Indian J. Phys., 2021, 95, 841–849. DOI: https://doi.org/10.1007/s12648-020-01739-x

Şaşioğlu E., Sandratskii L. M., Bruno P., Phys. Rev. B, 2008, 77, 064417. DOI: https://doi.org/10.1103/PhysRevB.77.064417

Aguayo A., Murrieta G., J. Magn. Magn. Mater., 2011, 323, 3013–3017. DOI: https://doi.org/10.1016/j.jmmm.2011.06.038

Semiannikova A. A., Perevozchikova Yu. A., Irkhin V. Yu., Marchenkova E. B, Korenistov P. S., Marchenkov V. V., AIP Adv., 2021, 11, 015139. DOI: https://doi.org/10.1063/9.0000118

Marchenkov V. V., Kourov N. I., Belozerova K. A., Emelyanova S. M., Dyakina V. P., Marchenkova E. B., Eisterer M., Weber H. W., J. Phys.: Conf. Ser., 2014, 568, 052019. DOI: https://doi.org/10.1088/1742-6596/568/5/052019

Chen Z., Liu W., Chen P., Ruan X., Sun J., Liu R., Gao C., Du J., Liu B., Meng H., Zhang R., Xu Y., Appl. Phys. Lett., 2020, 117, 012401. DOI: https://doi.org/10.1063/5.0013656

Stinshoff R., Nayak A. K., Fecher G. H., Balke B., Ouardi S., Skourski Y., Nakamura T., Felser C., Phys. Rev. B, 2017, 95, 060410.

Gavrea R., Hirian R., Isnard O., Pop V., Benea D., Solid State Commun., 2020, 309, 113812. DOI: https://doi.org/10.1016/j.ssc.2020.113812

Khan M., Jung J., Stoyko S. S., Mar A., Quetz A., Samanta T., Dubenko I., Ali N., Stadler S., Chow K. H., Appl. Phys. Lett., 2012, 100, 172403. DOI: https://doi.org/10.1063/1.4705422

Zheng H., Wang W., Wu D., Xue S., Zhai Q., Frenzel J., Luo Z., Intermetallics, 2013, 36, 90–95. DOI: https://doi.org/10.1016/j.intermet.2013.01.012

Nambiar S. S., Murthy B. R. N., Sathyashankara S., Prasanna A. A., J. Phys.: Conf. Ser., 2021, 2070, 012231. DOI: https://doi.org/10.1088/1742-6596/2070/1/012231

Chen X., Huang Y., Yuan H., Liu J., Chen H., Appl. Phys. A, 2018, 124, 2259. DOI: https://doi.org/10.1007/s00339-018-2259-0

Lukashev P., Kharel P., Gilbert S., Staten B., Hurley N., Fuglsby R., Huh Y., Valloppilly S., Zhang W., Yang K., Skomski R., Sellmyer D. J., Appl. Phys. Lett., 2016, 108, 141901. DOI: https://doi.org/10.1063/1.4945600

Fan L., Chen F., Li C., Hou X., Zhu X., Luo J., Chen Z., J. Magn. Magn. Mater., 2020, 497, 166060. DOI: https://doi.org/10.1016/j.jmmm.2019.166060

Blaha P., Schwarz K., Sorantin P., Trickey S. B., Comput. Phys. Commun., 1990, 59, 399–415. DOI: https://doi.org/10.1016/0010-4655(90)90187-6

Tran F., Blaha P., Schwarz K., Novák P., Phys. Rev. B, 2006, 74, 155108. DOI: https://doi.org/10.1103/PhysRevB.74.155108

Argaman N., Makov G., Am. J. Phys., 2000, 68, 69–79. DOI: https://doi.org/10.1119/1.19375

Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865–3868. DOI: https://doi.org/10.1103/PhysRevLett.77.3865

Taş M., Şaşioğlu E., Blügel S., Mertig I., Galanakis I., Phys. Rev. Mater., 2022, 6, 114401.

Wang X., Li T., Cheng Z., Wang X., Chen H., Appl. Phys. Rev., 2018, 5, 041103.

Wang X., Cheng Z., Zhang G., Yuan H., Chen H., Wang X., Phys. Rep., 2020, 888, 1–57. DOI: https://doi.org/10.1016/j.physrep.2020.08.004

Liu Z., Liu J., Zhao J., Nano Res., 2017, 10, 1972–1979. DOI: https://doi.org/10.1007/s12274-016-1384-3

Belashchenko K. D., Glasbrenner J. K., Wysocki A. L., Phys. Rev. B, 2012, 86, 224402. DOI: https://doi.org/10.1103/PhysRevB.86.224402

Shaughnessy M., Snow R., Damewood L., Fong C. Y., J. Nanomater., 2011, 2011, 140805. DOI: https://doi.org/10.1155/2011/140805

Jedema F. J., Nijboer M. S., Filip A. T., van Wees B. J., Phys. Rev. B, 2002, 67, 085319. DOI: https://doi.org/10.1103/PhysRevB.67.085319

Murnaghan F. D., Proc. Natl. Acad. Sci. U. S. A., 1944, 30, 244–247. DOI: https://doi.org/10.1073/pnas.30.9.244

Goraus J., Czerniewski J., Balin K., Fijałkowski M., Prusik K., Chrobak A., Mater. Charact., 2019, 154, 248–252. DOI: https://doi.org/10.1016/j.matchar.2019.06.007

Balakrishnan K., Alagarsamy S., Veerapandy V., Phys. Status Solidi B, 2022, 260, 2200329. DOI: https://doi.org/10.1002/pssb.202200329

Slater J. C., Phys. Rev., 1936, 49, 931–937. DOI: https://doi.org/10.1103/PhysRev.49.931

Pauling L., Phys. Rev., 1938, 54, 899–904. DOI: https://doi.org/10.1103/PhysRev.54.899

Krishnaveni S., Mater. Res. Express, 2019, 6, 096545. DOI: https://doi.org/10.1088/2053-1591/ab2ec4

Jia H. Y., Dai X. F., Wang L. Y., Liu R., Wang X. T., Li P. P., Cui Y. T., Liu G. D., AIP Adv., 2014, 4, 047113. DOI: https://doi.org/10.1063/1.4871403

Published

2025-09-23

How to Cite

[1]
N. Bouteldja, N. Hacini, I. Ouadha, and H. Rached, “Beyond conventional half-metals: gapless states and spin gapless semiconducting behavior in X2MnGa (X =Ti, Ir) Heusler compounds”, Condens. Matter Phys., vol. 28, no. 3, p. 33702, Sep. 2025, doi: 10.5488/cmp.28.33702.

Similar Articles

11-20 of 61

You may also start an advanced similarity search for this article.