Beyond conventional half-metals: gapless states and spin gapless semiconducting behavior in X2MnGa (X =Ti, Ir) Heusler compounds
DOI:
https://doi.org/10.5488/cmp.28.33702Keywords:
Heusler alloys, spintronics, DFT+U, spin gapless semiconductors, half-metals, magnetic materialsAbstract
The search for high-performance spintronic materials motivates the exploration of Heusler alloys with unconventional electronic properties. Using density functional theory with Hubbard correction (DFT+U, U = 4 eV), we investigate X2MnGa (X = Ti, Ir) alloys, which stabilize in the ferromagnetic L21-type structure with strong thermodynamic stability. Electronic structure calculations reveal contrasting behaviors: Ti2MnGa transitions from a metallic L21-type phase to a spin gapless semiconductor (SGS) in the XA-type, while Ir2MnGa exhibits gapless half-metallicity behavior in the L21-type but becomes half-metallic in the XA-type. The magnetic properties are governed by spd hybridization between Mn-3d and X-d/Ga-p states, which stabilizes ferromagnetism and tailors electronic states near the Fermi level. The Hubbard U correction proves essential for accurately describing the correlated Mn-3d electrons. These alloys combine structural stability with tunable electronic and magnetic properties, offering a promising platform for spin-polarized transport in next-generation spintronic devices.
References
Palmstrøm C. J., Prog. Cryst. Growth Charact. Mater., 2016, 62, 371–397. DOI: https://doi.org/10.1016/j.pcrysgrow.2016.04.020
Chatterjee S., Chatterjee S., Giri S., Majumdar S., J. Phys.: Condens. Matter, 2022, 34, 013001. DOI: https://doi.org/10.1088/1361-648X/ac268c
Graf T., Felser C., Parkin S. S. P., In: Handbook of Spintronics, Xu Y., Awschalom D., Nitta J. (Eds.), Springer, Dordrecht, 2016, 335–364. DOI: https://doi.org/10.1007/978-94-007-6892-5_17
Elphick K., Frost W., Samiepour M., Kubota T., Takanashi K., Sukegawa H., Mitani S., Hirohata A., Sci. Technol. Adv. Mater., 2021, 22, 235–271. DOI: https://doi.org/10.1080/14686996.2020.1812364
Hirohata A., Lloyd D. C., MRS Bull., 2022, 47, 593–599. DOI: https://doi.org/10.1557/s43577-022-00350-1
Galanakis I., In: Heusler Alloys, Vol. 222, Felser C., Hirohata A. (Eds.), Springer, Cham, 2016, 3–36. DOI: https://doi.org/10.1007/978-3-319-21449-8_1
Gao G., Yao K., Appl. Phys. Lett., 2013, 103, 232409.
Galanakis I., Özdoğan K., Aktaş B., Şaşioğlu E., Appl. Phys. Lett., 2006, 89, 042502. DOI: https://doi.org/10.1063/1.2235913
Skaftouros S., Özdoğan K., Şaşioğlu E., Galanakis I., Appl. Phys. Lett., 2013, 102, 022402. DOI: https://doi.org/10.1063/1.4775599
Wang X., Cheng Z., Wang J., Wang X., Liu G., J. Mater. Chem. C, 2016, 4, 7176–7192. DOI: https://doi.org/10.1039/C6TC01343K
Zhang Y. J., Liu Z. H., Liu E. K., Liu G. D., Ma X. Q., Wu G. H., Europhys. Lett., 2015, 111, 37009. DOI: https://doi.org/10.1209/0295-5075/111/37009
Amrich O., Monir M. E. A., Baltach H., Omran S., Sun X.,Wang X., Al-Douri Y., Bouhemadou A., Khenata R., J. Supercond. Novel Magn., 2018, 31, 241–250. DOI: https://doi.org/10.1007/s10948-017-4206-2
Ahmed S., Zafar M., Rizwan M., Khan M. I., Arshad H., Jin H., Shabbir M., Al-Sehemi A. G., Shakil M., Indian J. Phys., 2021, 95, 841–849. DOI: https://doi.org/10.1007/s12648-020-01739-x
Şaşioğlu E., Sandratskii L. M., Bruno P., Phys. Rev. B, 2008, 77, 064417. DOI: https://doi.org/10.1103/PhysRevB.77.064417
Aguayo A., Murrieta G., J. Magn. Magn. Mater., 2011, 323, 3013–3017. DOI: https://doi.org/10.1016/j.jmmm.2011.06.038
Semiannikova A. A., Perevozchikova Yu. A., Irkhin V. Yu., Marchenkova E. B, Korenistov P. S., Marchenkov V. V., AIP Adv., 2021, 11, 015139. DOI: https://doi.org/10.1063/9.0000118
Marchenkov V. V., Kourov N. I., Belozerova K. A., Emelyanova S. M., Dyakina V. P., Marchenkova E. B., Eisterer M., Weber H. W., J. Phys.: Conf. Ser., 2014, 568, 052019. DOI: https://doi.org/10.1088/1742-6596/568/5/052019
Chen Z., Liu W., Chen P., Ruan X., Sun J., Liu R., Gao C., Du J., Liu B., Meng H., Zhang R., Xu Y., Appl. Phys. Lett., 2020, 117, 012401. DOI: https://doi.org/10.1063/5.0013656
Stinshoff R., Nayak A. K., Fecher G. H., Balke B., Ouardi S., Skourski Y., Nakamura T., Felser C., Phys. Rev. B, 2017, 95, 060410.
Gavrea R., Hirian R., Isnard O., Pop V., Benea D., Solid State Commun., 2020, 309, 113812. DOI: https://doi.org/10.1016/j.ssc.2020.113812
Khan M., Jung J., Stoyko S. S., Mar A., Quetz A., Samanta T., Dubenko I., Ali N., Stadler S., Chow K. H., Appl. Phys. Lett., 2012, 100, 172403. DOI: https://doi.org/10.1063/1.4705422
Zheng H., Wang W., Wu D., Xue S., Zhai Q., Frenzel J., Luo Z., Intermetallics, 2013, 36, 90–95. DOI: https://doi.org/10.1016/j.intermet.2013.01.012
Nambiar S. S., Murthy B. R. N., Sathyashankara S., Prasanna A. A., J. Phys.: Conf. Ser., 2021, 2070, 012231. DOI: https://doi.org/10.1088/1742-6596/2070/1/012231
Chen X., Huang Y., Yuan H., Liu J., Chen H., Appl. Phys. A, 2018, 124, 2259. DOI: https://doi.org/10.1007/s00339-018-2259-0
Lukashev P., Kharel P., Gilbert S., Staten B., Hurley N., Fuglsby R., Huh Y., Valloppilly S., Zhang W., Yang K., Skomski R., Sellmyer D. J., Appl. Phys. Lett., 2016, 108, 141901. DOI: https://doi.org/10.1063/1.4945600
Fan L., Chen F., Li C., Hou X., Zhu X., Luo J., Chen Z., J. Magn. Magn. Mater., 2020, 497, 166060. DOI: https://doi.org/10.1016/j.jmmm.2019.166060
Blaha P., Schwarz K., Sorantin P., Trickey S. B., Comput. Phys. Commun., 1990, 59, 399–415. DOI: https://doi.org/10.1016/0010-4655(90)90187-6
Tran F., Blaha P., Schwarz K., Novák P., Phys. Rev. B, 2006, 74, 155108. DOI: https://doi.org/10.1103/PhysRevB.74.155108
Argaman N., Makov G., Am. J. Phys., 2000, 68, 69–79. DOI: https://doi.org/10.1119/1.19375
Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865–3868. DOI: https://doi.org/10.1103/PhysRevLett.77.3865
Taş M., Şaşioğlu E., Blügel S., Mertig I., Galanakis I., Phys. Rev. Mater., 2022, 6, 114401.
Wang X., Li T., Cheng Z., Wang X., Chen H., Appl. Phys. Rev., 2018, 5, 041103.
Wang X., Cheng Z., Zhang G., Yuan H., Chen H., Wang X., Phys. Rep., 2020, 888, 1–57. DOI: https://doi.org/10.1016/j.physrep.2020.08.004
Liu Z., Liu J., Zhao J., Nano Res., 2017, 10, 1972–1979. DOI: https://doi.org/10.1007/s12274-016-1384-3
Belashchenko K. D., Glasbrenner J. K., Wysocki A. L., Phys. Rev. B, 2012, 86, 224402. DOI: https://doi.org/10.1103/PhysRevB.86.224402
Shaughnessy M., Snow R., Damewood L., Fong C. Y., J. Nanomater., 2011, 2011, 140805. DOI: https://doi.org/10.1155/2011/140805
Jedema F. J., Nijboer M. S., Filip A. T., van Wees B. J., Phys. Rev. B, 2002, 67, 085319. DOI: https://doi.org/10.1103/PhysRevB.67.085319
Murnaghan F. D., Proc. Natl. Acad. Sci. U. S. A., 1944, 30, 244–247. DOI: https://doi.org/10.1073/pnas.30.9.244
Goraus J., Czerniewski J., Balin K., Fijałkowski M., Prusik K., Chrobak A., Mater. Charact., 2019, 154, 248–252. DOI: https://doi.org/10.1016/j.matchar.2019.06.007
Balakrishnan K., Alagarsamy S., Veerapandy V., Phys. Status Solidi B, 2022, 260, 2200329. DOI: https://doi.org/10.1002/pssb.202200329
Slater J. C., Phys. Rev., 1936, 49, 931–937. DOI: https://doi.org/10.1103/PhysRev.49.931
Pauling L., Phys. Rev., 1938, 54, 899–904. DOI: https://doi.org/10.1103/PhysRev.54.899
Krishnaveni S., Mater. Res. Express, 2019, 6, 096545. DOI: https://doi.org/10.1088/2053-1591/ab2ec4
Jia H. Y., Dai X. F., Wang L. Y., Liu R., Wang X. T., Li P. P., Cui Y. T., Liu G. D., AIP Adv., 2014, 4, 047113. DOI: https://doi.org/10.1063/1.4871403
Downloads
Published
License
Copyright (c) 2025 N. Bouteldja, N. Hacini, I. Ouadha, H. Rached

This work is licensed under a Creative Commons Attribution 4.0 International License.