Toward a realistic model of multilayered bacterial colonies
DOI:
https://doi.org/10.5488/cmp.27.13802Keywords:
bacteria, active matter, orientational order, geometry, mechanics, mono-to-multilayer transitionAbstract
Bacteria are prolific at colonizing diverse surfaces under a widerange of environmental conditions, and exhibit fascinating examples of self-organization across scales. Though it has recently attracted considerable interest, the role of mechanical forces in the collective behavior of bacterial colonies is not yet fully understood. Here, we construct a model of growing rod-like bacteria, such as Escherichia coli based purely on mechanical forces. We perform overdamped molecular dynamics simulations of the colony starting from a few cells in contact with a surface. As the colony grows, microdomains of strongly aligned cells grow and proliferate. Our model captures both the initial growth of a bacterial colony and also shows characteristic signs of capturing the experimentally observed transition to multilayered colonies over longer timescales. We compare our results with experiments on E. coli cells and analyze the statistics of microdomains.
References
Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M., Annu. Rev. Microbiol., 1995, 49, No. 1, 711–745, https://doi.org/10.1146/annurev.mi.49.100195.003431. DOI: https://doi.org/10.1146/annurev.mi.49.100195.003431
Hartmann R., Singh P. K., Pearce P., Mok R., Song B., Díaz-Pascual F., Dunkel J., Drescher K., Nat. Phys., 2019, 15, No. 3, 251–256, https://doi.org/10.1038/s41567-018-0356-9. DOI: https://doi.org/10.1038/s41567-018-0356-9
Flemming H.-C., Wingender J., Nat. Rev. Microbiol., 2010, 8, No. 9, 623–633, https://doi.org/10.1038/nrmicro2415. DOI: https://doi.org/10.1038/nrmicro2415
Araújo N. A. M., Janssen L. M. C., Barois T., Boffetta G., Cohen I., Corbetta A., Dauchot O., Dijkstra M., Durham W. M., Dussutour A., et al., Soft Matter, 2023, 19, 1695–1704, https://doi.org/10.1039/D2SM01562E. DOI: https://doi.org/10.1039/D2SM01562E
Nijjer J., Li C., Zhang Q., Lu H., Zhang S., Yan J., Nat. Commun., 2021, 12, No. 1, 6632, https://doi.org/10.1038/s41467-021-26869-6. DOI: https://doi.org/10.1038/s41467-021-26869-6
Sengupta A., Front. Phys., 2020, 8, No. 184, https://doi.org/10.3389/fphy.2020.00184. DOI: https://doi.org/10.3389/fphy.2020.00184
Allen R. J., Waclaw B., Rep. Prog. Phys., 2018, 82, No. 1, 016601, https://doi.org/10.1088/1361-6633/aae546. DOI: https://doi.org/10.1088/1361-6633/aae546
Drescher K., Dunkel J., Nadell C. D., Van Teeffelen S., Grnja I., Wingreen N. S., Stone H. A., Bassler B. L., PNAS, 2016, 113, No. 14, E2066–E2072, https://doi.org/10.1073/pnas.1601702113. DOI: https://doi.org/10.1073/pnas.1601702113
Karimi A., Karig D., Kumar A., Ardekani A. M., Lab Chip, 2015, 15, No. 1, 23–42, https://doi.org/10.1039/C4LC01095G. DOI: https://doi.org/10.1039/C4LC01095G
Farrell F. D. C., Hallatschek O., Marenduzzo D., Waclaw B., Phys. Rev. Lett., 2013, 111, No. 16, 168101, https://doi.org/10.1103/PhysRevLett.111.168101. DOI: https://doi.org/10.1103/PhysRevLett.111.168101
Tiron R., Mallon F., Dias F., Reynaud E. G., Renewable Sustainable Energy Rev., 2015, 43, 1263–1272, https://doi.org/10.1016/j.rser.2014.11.105. DOI: https://doi.org/10.1016/j.rser.2014.11.105
Hall-Stoodley L., Costerton J. W., Stoodley P., Nat. Rev. Microbiol., 2004, 2, No. 2, 95–108, https://doi.org/10.1038/nrmicro821. DOI: https://doi.org/10.1038/nrmicro821
Mazza M. G., J. Phys. D: Appl. Phys., 2016, 49, No. 20, 203001, https://doi.org/10.1088/0022-3727/49/20/203001. DOI: https://doi.org/10.1088/0022-3727/49/20/203001
You Z., Pearce D. J., Sengupta A., Giomi L., Phys. Rev. X, 2018, 8, No. 3, 031065, https://doi.org/10.1103/PhysRevX.8.031065. DOI: https://doi.org/10.1103/PhysRevX.8.031065
You Z., Pearce D. J., Sengupta A., Giomi L., Phys. Rev. Lett., 2019, 123, No. 17, 178001, https://doi.org/10.1103/PhysRevLett.123.178001. DOI: https://doi.org/10.1103/PhysRevLett.123.178001
Dell’Arciprete D., Blow M. L., Brown A. T., Farrell F. D. C., Lintuvuori J. S., McVey A. F., Marenduzzo D., Poon W. C. K., Nat. Commun., 2018, 9, No. 1, 4190, https://doi.org/10.1038/s41467-018-06370-3. DOI: https://doi.org/10.1038/s41467-018-06370-3
Boyer D., Mather W., Mondragón-Palomino O., Orozco-Fuentes S., Danino T., Hasty J., Tsimring L. S., Phys. Biol., 2011, 8, No. 2, 026008, https://doi.org/10.1088/1478-3975/8/2/026008. DOI: https://doi.org/10.1088/1478-3975/8/2/026008
Sheats J., Sclavi B., Cosentino Lagomarsino M., Cicuta P., Dorfman K. D., R. Soc. Open Sci., 2017, 4, No. 6, 170463, https://doi.org/10.1098/rsos.170463. DOI: https://doi.org/10.1098/rsos.170463
Beroz F., Yan J., Meir Y., Sabass B., Stone H. A., Bassler B. L., Wingreen N. S., Nat. Phys., 2018, 14, No. 9, 954–960, https://doi.org/10.1038/s41567-018-0170-4. DOI: https://doi.org/10.1038/s41567-018-0170-4
Dhar J., Thai A. L. P., Ghoshal A., Giomi L., Sengupta A., Nat. Phys., 2022, 18, No. 8, 945–951, https://doi.org/10.1038/s41567-022-01641-9. DOI: https://doi.org/10.1038/s41567-022-01641-9
Earl D. J., Ilnytskyi J., Wilson M. R., Mol. Phys., 2001, 99, No. 20, 1719–1726, https://doi.org/10.1080/00268970110069551. DOI: https://doi.org/10.1080/00268970110069551
Pearce P., Song B., Skinner D. J., Mok R., Hartmann R., Singh P. K., Jeckel H., Oishi J. S., Drescher K., Dunkel J., Phys. Rev. Lett., 2019, 123, No. 25, 258101, https://doi.org/10.1103/PhysRevLett.123.258101. DOI: https://doi.org/10.1103/PhysRevLett.123.258101
Volfson D., Cookson S., Hasty J., Tsimring L. S., PNAS, 2008, 105, No. 40, 15346–15351, https://doi.org/10.1073/pnas.0706805105. DOI: https://doi.org/10.1073/pnas.0706805105
Vega C., Lago S., Comput. Chem., 1994, 18, No. 1, 55–59, https://doi.org/10.1016/0097-8485(94)80023-5. DOI: https://doi.org/10.1016/0097-8485(94)80023-5
Wittmann R., Nguyen G. P., Löwen H., Schwarzendahl F. J., Sengupta A., Commun. Phys., 2023, 6, No. 1, 331, https://doi.org/10.1038/s42005-023-01449-w. DOI: https://doi.org/10.1038/s42005-023-01449-w
Willis L., Huang K. C., Nat. Rev. Microbiol., 2017, 15, No. 10, 606–620, https://doi.org/10.1038/nrmicro.2017.79. DOI: https://doi.org/10.1038/nrmicro.2017.79
Jun S., Si F., Pugatch R., Scott M., Rep. Prog. Phys., 2018, 81, No. 5, 056601, https://doi.org/10.1088/1361-6633/aaa628. DOI: https://doi.org/10.1088/1361-6633/aaa628
Su P.-T., Liao C.-T., Roan J.-R., Wang S.-H., Chiou A., Syu W.-J., PloS ONE, 2012, 7, No. 11, e48098, https://doi.org/10.1371/journal.pone.0048098. DOI: https://doi.org/10.1371/journal.pone.0048098
Grant M. A. A., Wacław B., Allen R. J., Cicuta P., J. R. Soc. Interface, 2014, 11, No. 97, 20140400, https://doi.org/10.1098/rsif.2014.0400. DOI: https://doi.org/10.1098/rsif.2014.0400
Ilnytskyi J. M., Trokhymchuk A., Schoen M., J. Chem. Phys., 2014, 141,No. 11, 114903, https://doi.org/10.1063/1.4894438. DOI: https://doi.org/10.1063/1.4894438
Ester M., Kriegel H.-P., Sander J., Xu X., In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), AAAI, 1996, 226–231.
Paget J., Mazza M. G., Archer A. J., Shendruk T. N., Nat. Commun., 2023, 14, No. 1, 1048, https://doi.org/10.1038/s41467-023-36506-z. DOI: https://doi.org/10.1038/s41467-023-36506-z
Paget J., Alberti U., Mazza M. G., Archer A. J., Shendruk T. N., J. Phys. A: Math. Theor., 2022, 55, No. 35, 354001, https://doi.org/10.1088/1751-8121/ac80df. DOI: https://doi.org/10.1088/1751-8121/ac80df
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 M. T. Khan, J. Cammann, A. Sengupta, E. Renzi, M. G. Mazza
This work is licensed under a Creative Commons Attribution 4.0 International License.