Elastic properties of fluid mercury across the metal-nonmetal transition: Ab initio simulation study

Authors

  • T. Bryk Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Str., 79011 Lviv, Ukraine; Lviv Polytechnic National University, 12 S. Bandera Str., 79013 Lviv, Ukraine https://orcid.org/0000-0002-4360-0634
  • O. Bakai Akhiezer Institute for Theoretical Physics, National Science Center “Kharkiv Institute of Physics and Technology” of NAS of Ukraine, 61108 Kharkiv, Ukraine
  • A. P. Seitsonen Département de Chimie, École Normale Supérieure, 24 rue Lhomond, 75005 Paris, France https://orcid.org/0000-0003-4331-0650

DOI:

https://doi.org/10.5488/cmp.28.23301

Keywords:

elastic properties, liquids, sound propagation, ab initio molecular dynamics

Abstract

We report an ab initio molecular dynamics study of fluid mercury at temperature 1750 K in the range of densities 7–13.5 g/cm3 . Along this isothermal line we performed an analysis of total charge fluctuations, which make evidence of neutral atom-like screening in fluid Hg for densities less than 9.25 g/cm3 , which practically coincides with the emergence of the gap in electronic density of states. High-frequency shear modulus, high-frequency and adiabatic speeds of sound, shear viscosity, Maxwell relaxation time and dispersion of collective excitations are analyzed as a function of density along the isothermal line.

References

Mott N. F., Rev. Mod. Phys., 1968, 40, 677. DOI: https://doi.org/10.1103/RevModPhys.40.677

Hensel F., Warren Jr. W. W., Fluid Metals, Princeton University Press, Princeton, 1999. DOI: https://doi.org/10.1515/9781400865000

Bonev S., Schwegler E., Ogitsu T., Galli G., Nature, 2004, 431, 669. DOI: https://doi.org/10.1038/nature02968

Tamblyn I., Bonev S., Phys. Rev. Lett., 2010, 104, 065702. DOI: https://doi.org/10.1103/PhysRevLett.104.065702

Weir S. T., Mitchell A. C., Nellis W. J., Phys. Rev. Lett., 1996, 76, 1860. DOI: https://doi.org/10.1103/PhysRevLett.76.1860

Kajihara Y., Inui M., Ohara K., Matsuda K., J. Phys.: Condens. Matter, 2020, 32, 274001. DOI: https://doi.org/10.1088/1361-648X/ab7d66

Kobayashi K., Sekikawa T., Maruyama K., J. Non-Cryst. Solids, 2021, 553, 120468. DOI: https://doi.org/10.1016/j.jnoncrysol.2020.120468

Scandolo S., PNAS, 2003, 100, 3051. DOI: https://doi.org/10.1073/pnas.0038012100

Nellis W. J., Rep. Prog. Phys., 2006, 69, 1479. DOI: https://doi.org/10.1088/0034-4885/69/5/R05

Morales M. A., Pierleoni C., Schwegler E., Ceperley D. M., PNAS, 2010, 107, 12799. DOI: https://doi.org/10.1073/pnas.1007309107

Raty J.-Y., Schwegler E., Bonev S. A., Nature, 2007, 449, 448–451. DOI: https://doi.org/10.1038/nature06123

Bryk T., De Panfilis S., Gorelli F. A., Gregoryanz E., Krisch M., Ruocco G., Santoro M., Scopigno T., Seitsonen A. P., Phys. Rev. Lett., 2013, 111, 077801. DOI: https://doi.org/10.1103/PhysRevLett.111.077801

Bryk T., Klevets I., Ruocco G., Scopigno T., Seitsonen A. P., Phys. Rev. B, 2014, 90, 014202. DOI: https://doi.org/10.1103/PhysRevB.90.014202

Kresse G., Hafner J., Phys. Rev. B, 1997, 55, 7539. DOI: https://doi.org/10.1103/PhysRevB.55.7539

Tamura K., Inui M., Matsuda K., Ishikawa D., J. Non-Cryst. Solids, 2007, 353, 3348. DOI: https://doi.org/10.1016/j.jnoncrysol.2007.05.124

Inui M., Matsuda K., Ishikawa D., Tamura K., Ohishi Y., Phys. Rev. Lett., 2007, 98, 185504. DOI: https://doi.org/10.1103/PhysRevLett.98.185504

Calderín L., González L. E., González D. J., J. Phys.: Condens. Matter, 2011, 23, 375105. DOI: https://doi.org/10.1088/0953-8984/23/37/375105

Calderin L., González L. E., González D. J., Eur. Phys. J. Spec. Topics, 2011, 196, 27. DOI: https://doi.org/10.1140/epjst/e2011-01415-2

Munejiri S., Shimojo F., Hoshino K., J. Phys.: Condens. Matter, 1998, 10, 4963. DOI: https://doi.org/10.1088/0953-8984/10/23/005

Bove L. E., Sacchetti F., Petrillo C., Dorner B., Formisano F., Sampoli M., Barocchi F., Philos. Mag. B, 2002, 82, 365. DOI: https://doi.org/10.1080/13642810110083912

HosokawaS., Sinn H., Hensel F., Alatas A., Alp E. E., Pilgrim W.-C., J. Non-Cryst. Solids, 2002, 312–314, 163. DOI: https://doi.org/10.1016/S0022-3093(02)01677-0

Bove L. E., Sacchetti F., Petrillo C., Dorner B., Formisano F., Sampoli M., Barocchi F., J. Non-Cryst. Solids, 2002, 307–310, 842. DOI: https://doi.org/10.1016/S0022-3093(02)01529-6

Ishikawa D., Inui M., Matsuda K., Tamura K., Tsutsui S., Baron A. Q. R., Phys. Rev. Lett., 2004, 93, 097801. DOI: https://doi.org/10.1103/PhysRevLett.93.097801

Bomont J.-M., J. Chem. Phys., 2006, 124, 054504. DOI: https://doi.org/10.1063/1.2198807

Yamane A., Shimojo F., Hoshino K., J. Phys. Soc. Jpn., 2006, 75, 124602. DOI: https://doi.org/10.1143/JPSJ.75.124602

Hoshino K., Tanaka S., Shimojo F., J. Non-Cryst. Solids, 2007, 353, 3389. DOI: https://doi.org/10.1016/j.jnoncrysol.2007.05.089

Kobayashi K., Kajikawa H., Hiejima Y., Hoshino T., Yao M., J. Non-Cryst. Solids, 2007, 353, 3362. DOI: https://doi.org/10.1016/j.jnoncrysol.2007.05.084

Bomont J.-M., Bretonnet J.-L., Gonzalez D. J., Gonzalez L. E., Phys. Rev. B, 2009, 79, 144202. DOI: https://doi.org/10.1103/PhysRevB.79.144202

Calderin L., González L. E., González D. J., J. Chem. Phys., 2009, 130, 194505.

Ayrinhac S., Gauthier M., Bove L. E., Morand M., Le Marchand G., Bergame F., Philippe J., Decremps F., J. Chem. Phys., 2014, 140, 244201. DOI: https://doi.org/10.1063/1.4882695

Landau L. D., Zeldovich Ya. B., Acta Phys.-Chim. USSR, 1943, 18, 194. DOI: https://doi.org/10.1111/j.1600-0447.1943.tb03789.x

Inui M., Hong X., Tamura K., Phys. Rev. B, 2003, 68, 094108. DOI: https://doi.org/10.1103/PhysRevB.68.094108

Maruyama K., Endo H., Hoshino H., Hensel F., Phys. Rev. B, 2009, 80, 014201. DOI: https://doi.org/10.1103/PhysRevB.80.014201

Ruland W., Hensel F., J. Appl. Crystallogr., 2010, 43, 244. DOI: https://doi.org/10.1107/S0021889809055113

Rademann K., Kaiser B., Even U., Hensel F., Phys. Rev. Lett., 1987, 59, 2319. DOI: https://doi.org/10.1103/PhysRevLett.59.2319

Haberland H., Kornmeier H., Langosch H., Oschwald M., Tanner G., J. Chem. Soc. Faradey Trans., 1990, 86, 2473. DOI: https://doi.org/10.1039/ft9908602473

Haberland H., von Issendorff B., Yufeng J., Kolar T., Thanner G., Z. Phys. D: At. Mol. Clusters, 1993, 26, 8. DOI: https://doi.org/10.1007/BF01429096

Bakai O., Bratchenko M., Dyuldya S., J. Mol. Liq., 2018, 260, 245. DOI: https://doi.org/10.1016/j.molliq.2018.03.068

Inui M., Ishikawa D., Matsuda K., Tamura K., Tsutsui S., Baron A. Q. R., J. Phys. Chem. Solids, 2005, 66, 2223. DOI: https://doi.org/10.1016/j.jpcs.2005.09.021

Bryk T., Mryglod I., Scopigno T., Ruocco G., Gorelli F., Santoro M., J. Chem. Phys., 2010, 133, 024502. DOI: https://doi.org/10.1063/1.3442412

Bryk T., Pierleoni C., Ruocco G., Seitsonen A. P., J. Mol. Liq., 2020, 312, 113274. DOI: https://doi.org/10.1016/j.molliq.2020.113274

Massobrio C., Pasquarello A., Phys. Rev. B, 2003, 68, 020201. DOI: https://doi.org/10.1103/PhysRevB.68.020201

Kresse G., Hafner J., Phys. Rev. B, 1993, 47, 558. DOI: https://doi.org/10.1103/PhysRevB.47.558

Kresse G., Hafner J., Phys. Rev. B, 1994, 49, 14251. DOI: https://doi.org/10.1103/PhysRevB.49.14251

Kresse G., Furthmüller J., Comput. Mat. Sci., 1996, 6, 15. DOI: https://doi.org/10.1016/0927-0256(96)00008-0

Kresse G., Furthmüller J., Phys. Rev. B, 1996, 54, 11169. DOI: https://doi.org/10.1103/PhysRevB.54.11169

Blöchl P. E., Phys. Rev. B, 1994, 50, 17953. DOI: https://doi.org/10.1103/PhysRevB.50.17953

Kresse G., Joubert D., Phys. Rev. B, 1999, 59, 1758. DOI: https://doi.org/10.1103/PhysRevB.59.1758

Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865

Hansen J.-P., McDonald I. R., Theory of Simple Liquids, Academic Press, London, 1986. DOI: https://doi.org/10.1016/B978-0-08-057101-0.50015-9

Boon J.-P., Yip S., Molecular Hydrodynamics, McGraw-Hill, New-York, 1980.

Mryglod I. M., Omelyan I. P., Tokarchuk M. V., Mol. Phys., 1995, 84, 235. DOI: https://doi.org/10.1080/00268979500100181

de Schepper I. M.,. Cohen E. G. D, Bruin C., van Rijs J. C., Montfrooij W., de Graaf L. A., Phys. Rev. A, 1988, 38, 271. DOI: https://doi.org/10.1103/PhysRevA.38.271

Bryk T., Ruocco G., Seitsonen A. P., Sci. Rep., 2023, 13, 18042. DOI: https://doi.org/10.1038/s41598-023-45338-2

Bryk T., Ruocco G., Mol. Phys., 2013, 111, 3457. DOI: https://doi.org/10.1080/00268976.2013.838313

Bryk T., Kopcha M., Ruocco G., J. Mol. Liq., 2023, 387, 122622. DOI: https://doi.org/10.1016/j.molliq.2023.122622

Tamura K., Inui M., Nakaso I., Oh’ishi Y., Funakoshi K., Utsumi W., J. Phys.: Condens. Matter, 1998, 10, 11405. DOI: https://doi.org/10.1088/0953-8984/10/49/027

Bryk T., Gorelli F. A., Ruocco G., Santoro M., Scopigno T., Phys. Rev. E, 2014, 90, 042301. DOI: https://doi.org/10.1103/PhysRevE.90.042301

Okada K., Odawara A., Yao M., Rev. High Pressure Sci. Technol., 1998, 7, 736. DOI: https://doi.org/10.4131/jshpreview.7.736

Published

2025-06-25

How to Cite

[1]
T. Bryk, O. Bakai, and A. P. Seitsonen, “Elastic properties of fluid mercury across the metal-nonmetal transition: Ab initio simulation study”, Condens. Matter Phys., vol. 28, no. 2, p. 23301, Jun. 2025, doi: 10.5488/cmp.28.23301.

Similar Articles

1-10 of 60

You may also start an advanced similarity search for this article.