The local structure, electronic and optical properties of Pb(Mg1/3Nb2/3)O3-PbTiO3: first-principles study
DOI:
https://doi.org/10.5488/cmp.27.23702Keywords:
local structure, bandgap, density of states, optical propertiesAbstract
Pb(Mg1/3Nb2/3)O3-PbTiO3 perovskite-based crystals attract considerable scientific interest due to their interesting properties and possible use in piezoelectricity and photovoltaics. To understand the local structure and fundamental properties of such materials, in this work, we focused on the study within the density functional theory of structural, electronic, and optical properties of Pb[(Mg1/3Nb2/3)0.75Ti0.25]O3. Using GGA(PBEsol) approximation for structure optimization gives a good agreement with experimental data. Through the variation in Hubbard U parameters to GGA(PBEsol) functional, we achieve the bandgap for the Pb[(Mg1/3Nb2/3)0.75Ti0.25]O3 which is in good agreement with the experimental results. The study of the bond populations showed that the Mg-O bond demonstrates no covalency, whereas there is a significant Ti-O and Nb-O covalent bonding. Such different bonding characteristics must be responsible for the relaxor properties of Pb[(Mg1/3Nb2/3)0.75Ti0.25]O3 compound. In addition, the investigations of the optical properties of the Pb[(Mg1/3Nb2/3)0.75Ti0.25]O3 by adopting Hubbard U corrections, modifying the error of the GGA approximation, and confirming the electronic analysis, were performed.
References
Luo H., Xu G., Xu H., Wang P., Yin Z., Jpn. J. Appl. Phys., 2000, 39, 5581. DOI: https://doi.org/10.1143/JJAP.39.5581
Kutnjak Z., Petzelt J., Blinc R., Nature, 2006, 441, 956. DOI: https://doi.org/10.1038/nature04854
Algueró M., Moure A., Pardo L., Holc J., Kosec M., Acta Mater., 2006, 54, 501–511. DOI: https://doi.org/10.1016/j.actamat.2005.09.020
Bokov A. A., Ye Z. G., Appl. Phys. Lett., 2000, 77, 1888. DOI: https://doi.org/10.1063/1.1310629
Noheda B., Cox D. E., Shirane G., Gao J., Ye Z. G., Phys. Rev. B, 2002, 66, 054104
Ye Z. G., Curr. Opin. Solid State Mater. Sci., 2002, 6, 35–44. DOI: https://doi.org/10.1016/S1359-0286(02)00019-0
Semak S., Kapustianyk V., Eliyashevskyy Yu., Bovgyra O., Kovalenko M., Mostovoi U., Doudin B., Kundys B., J. Phys.: Condens. Matter, 2023, 35, 094001. DOI: https://doi.org/10.1088/1361-648X/aca579
Tu C. S., Wang F. T., Chien R. R., Schmidt H. V., Hung C. M., Tseng C. T., Appl. Phys. Lett., 2006, 88, 032902.
Liew W. H., Chen Y., Alexe M., Yao K., Small, 2022, 18, 2106275. DOI: https://doi.org/10.1002/smll.202106275
Makhort A. S., Schmerber G.,Kundys B., Mater.Res. Express, 2019, 6, 066313. DOI: https://doi.org/10.1088/2053-1591/ab0758
Makhort A. S., Chevrier F., Kundys D., Doudin B., Kundys B., Phys. Rev. Mater., 2018, 2, 012401.
Bokov A. A., Ye Z. G., Phys. Rev. B, 2002, 66, 094112.
Shvartsman V. V., Kholkin A. L., Raevski I. P., Raevskaya S. I., Savenko F. I., Emelyanov A. S., J. Appl. Phys., 2013, 113, 187208.
Li J., Yin R., Su X., Wu H. H., Li J., Qin S., Sun S., Chen J., Su Y., Qiao L., Guo D., Bai Y., Acta Mater., 2020, 182, 250–256. DOI: https://doi.org/10.1016/j.actamat.2019.11.017
Li J., Li J.,Wu H. H., Zhou O., Chen J., Lookman T., Su Y., Qiao L., Bai Y., ACS Appl. Mater. Interfaces, 2021, 13, 38467–38476. DOI: https://doi.org/10.1021/acsami.1c07714
Tan T., Takenaka H., Xu C., Duan W., Grinberg I., Rappe A. M., Phys. Rev. B, 2018, 97, 174101.
Li C., Xu B., Lin D., Zhang S., Bellaiche L., Shrout T. R., Li F., Phys. Rev. B, 2020, 101, 140102(R). DOI: https://doi.org/10.1103/PhysRevB.101.140102
Grinberg I., Rappe A. M., Phys. Rev. B, 2004, 70, 220101(R).
Takenaka H., Grinberg I., Shin Y. H., Rappe A. M., Ferroelectrics, 2014, 469, 1–13. DOI: https://doi.org/10.1080/00150193.2014.948341
Grinberg I., Suchomel M. R., Davies P. K., Rappe A. M., J. Appl. Phys., 2005, 98, 094111 DOI: https://doi.org/10.1063/1.2128049
Grinberg I., Cooper V. R., Rappe A. M., Phys. Rev. B, 2004, 69, 144118. DOI: https://doi.org/10.1103/PhysRevB.69.144118
Clark S. J., Segall M. D., Pickard C. J., Hasnip P. J., Probert M. I. J., Refson K., Payne M. C., Z. Kristallogr., 2005, 220, 567–570. DOI: https://doi.org/10.1524/zkri.220.5.567.65075
Bovgyra O. V., Kovalenko M. V., In: Proceedings of the Conference “2015 International Young Scientists Forum on Applied Physics” (Dnipropetrovsk, 2015), IEEE, New York, 2015, 1–4.
Bovgyra O., Kozachenko O., Kovalenko M., Kapustianyk V., Appl. Nanosci., 2023, 13, 5003–5010. DOI: https://doi.org/10.1007/s13204-022-02662-9
Bovgyra O. V., Kovalenko M. V., J. Nano- Electron. Phys., 2016, 8, 02031. DOI: https://doi.org/10.21272/jnep.8(2).02031
Kapustianyk V., Semak S., Chornii Yu., Bovgyra O., Kovalenko M., Physica B, 2022, 639, 413929. DOI: https://doi.org/10.1016/j.physb.2022.413929
Davies P. K., Akbas M. A., J. Phys. Chem. Solids, 2000, 61, 159–166. DOI: https://doi.org/10.1016/S0022-3697(99)00275-9
Sepliarsky M., Cohen R. E., J. Phys.: Condens. Matter, 2011, 23, 435902. DOI: https://doi.org/10.1088/0953-8984/23/43/435902
Makhort A., Gumeniuk R., Dayen J. F., Dunne P., Burkhardt U., Viret M., Doudin B., Kundys B., Adv. Opt. Mater., 2022, 10, 2102353. DOI: https://doi.org/10.1002/adom.202102353
Grinberg I., Rappe A. M., Phase Transitions, 2007, 80, 351–368. DOI: https://doi.org/10.1080/01411590701228505
Zhang Y., Sun J., Perdew J. P., Wu X., Phys. Rev. B, 2017, 96, 035143. DOI: https://doi.org/10.1103/PhysRevB.96.035143
Wan X., Chan H. L. W., Choy C. L., Zhao X., Luo H., J. Appl. Phys., 2004, 96, 1387.
Derkaoui I., Achehboune M., Eglitis R. I., Popov A. I., Rezzouk A., Materials, 2023, 16, 4302. DOI: https://doi.org/10.3390/ma16124302
Yang K., Wang C. L., Li J. C., Integr. Ferroelectr., 2006, 78, 113–117. DOI: https://doi.org/10.1080/10584580600660033
Park S. G., Magyari-Köpe B., Nishi Y., Phys. Rev. B, 2010, 82, 115109.
Kovalenko M., Bovgyra O., Franiv A., Dzikovskyi V., Mater. Today: Proc., 2021, 35, 604–608. DOI: https://doi.org/10.1016/j.matpr.2019.11.274
Bovgyra O., Kovalenko M., Dzikovskyi V., Moroz M., In: Proceedings of the Conference “2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON)” (Lviv, 2019), IEEE, 2019, 726–731.
Bovgyra O.,Kovalenko M., Bovhyra R., DzikovskyiV., J. Phys. Stud., 2019, 23, 4301. DOI: https://doi.org/10.30970/jps.23.4301
Derkaoui I., Achehboune M., Boukhoubza I., El Adnani Z., Rezzouk A., Comput. Mater. Sci., 2023, 217, 111913. DOI: https://doi.org/10.1016/j.commatsci.2022.111913
Shirane G., Pepinsky R., Frazer B. C., Acta Crystallogr., 1956, 9, 131–140. DOI: https://doi.org/10.1107/S0365110X56000309
Ambrosch-Draxl C., Sofo J. O., Comput. Phys. Commun., 2006, 175, 1–14. DOI: https://doi.org/10.1016/j.cpc.2006.03.005
Adachi S., Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors, JohnWiley & Sons, 2009. DOI: https://doi.org/10.1002/9780470744383
Downloads
Published
License
Copyright (c) 2024 M. Kovalenko, O. Bovgyra, V. Kapustianyk, O. Kozachenko
This work is licensed under a Creative Commons Attribution 4.0 International License.