Hamiltonian limited valence model for liquid polyamorphism
DOI:
https://doi.org/10.5488/cmp.27.23601Keywords:
liquid-liquid phase transition, liquid-gas phase transition, solid-solid transformations, phase diagramsAbstract
Liquid-liquid phase transitions have been found experimentally or by computer simulations in many compounds such as water, hydrogen, sulfur, phosphorus, carbon, silica, and silicon. Limited valence model implemented via event-driven molecular dynamics algorithm provides a simple generic mechanism for the liquid-liquid phase transitions in all these diverse cases. Here, we introduce a variant of the limited valence model with a well defined Hamiltonian, i.e., a unique algorithm by which the potential energy of the system of particles can be computed solely from the coordinates of the particles and is thus equivalent to a complex multi-body potential. We present several examples of the model which can be used to reproduce liquid--liquid phase transition in systems with maximum valence z = 1 (hydrogen), z = 2 (sulfur) and z = 4 (water), where z is the maximum number of bonds an atom is allowed to have. For z = 1, we find a set of parameters for which the system has a liquid-liquid and an isostructural solid-solid critical points. For z = 4, we find a set of parameters for which the phase diagram resembles that of water with a wide region of negative thermal expansion coefficient (density anomaly) extending into the metastable region of negative pressures. The limited valence model can be modified to forbid not only too large valences but also too low valences. In the case of sulfur, we forbid the formation of monomers, thus restricting the valence v of an atom to be within an interval 1 = vmin ≤ v ≤ vmax ≡ z = 2.
References
Debenedetti P. G., Nature, 1998, 392, 127–128. DOI: https://doi.org/10.1038/32286
Stanley H. E. (Ed.), Liquid Polymorphism, Vol. 152, John Wiley & Sons, 2013. DOI: https://doi.org/10.1002/9781118540350
Anisimov M. A., Duška M., Caupin F., Amrhein L. E., Rosenbaum A., Sadus R. J., Phys. Rev. X, 2018, 8, 011004. DOI: https://doi.org/10.1103/PhysRevX.8.011004
Tanaka H., J. Chem. Phys., 2020, 153, 130901. DOI: https://doi.org/10.1063/5.0021045
Vollhardt D., Woelfle P., The Superfluid Phases of Helium 3, CRC Press, London, 1990. DOI: https://doi.org/10.1063/1.2810215
Schmitt A., Introduction to Superfluidity: Field-theoretical Approach and Applications, LectureNotes in Physics, Vol. 888, Springer International Publishing, Cham, 2015. DOI: https://doi.org/10.1007/978-3-319-07947-9
Ohta K., Ichimaru K., Einaga M., Kawaguchi S., Shimizu K., Matsuoka T., Hirao N., Ohishi Y., Sci. Rep., 2015, 5, 16560. DOI: https://doi.org/10.1038/srep16560
Zaghoo M., Salamat A., Silvera I. F., Phys. Rev. B, 2016, 93, 155128. DOI: https://doi.org/10.1103/PhysRevB.93.155128
McWilliams R. S., Dalton D. A., Mahmood M. F., Goncharov A. F., Phys. Rev. Lett., 2016, 116, 255501. DOI: https://doi.org/10.1103/PhysRevLett.116.255501
Norman G. E., Saitov I. M., Phys.-Usp., 2021, 64, 1094. DOI: https://doi.org/10.3367/UFNe.2021.07.039004
Fried N. R., Longo T. J., Anisimov M. A., J. Chem. Phys., 2022, 157, 101101. DOI: https://doi.org/10.1063/5.0107043
Henry L., Mezouar M., Garbarino G., Sifré D., Weck G., Datchi F., Nature, 2020, 584, 382–386. DOI: https://doi.org/10.1038/s41586-020-2593-1
Katayama Y., Mizutani T., Utsumi W., Shimomura O., Yamakata M., Funakoshi K., Nature, 2000, 403, 170–173. DOI: https://doi.org/10.1038/35003143
Katayama Y., Inamura Y., Mizutani T., Yamakata M., Utsumi W., Shimomura O., Science, 2004, 306, No. 5697, 848–851. DOI: https://doi.org/10.1126/science.1102735
Glosli J. N., Ree F. H., Phys. Rev. Lett., 1999, 82, 4659–4662. DOI: https://doi.org/10.1103/PhysRevLett.82.4659
Sastry S., Angell C. A., Nat. Mater., 2003, 2, 739–743. DOI: https://doi.org/10.1038/nmat994
Beye M., Sorgenfrei F., Schlotter W. F.,WurthW., Föhlisch A., Proc. Natl. Acad. Sci. U.S.A., 2010, 107, No. 39, 16772–16776. DOI: https://doi.org/10.1073/pnas.1006499107
Vasisht V. V., Saw S., Sastry S., Nat. Phys., 2011, 7, 549–553. DOI: https://doi.org/10.1038/nphys1993
Sciortino F., Nat. Phys., 2011, 7, 523–524. DOI: https://doi.org/10.1038/nphys2038
Saika-Voivod I., Sciortino F., Poole P. H., Phys. Rev. E, 2000, 63, 011202. DOI: https://doi.org/10.1103/PhysRevE.63.011202
Lascaris E., Hemmati M., Buldyrev S. V., Stanley H. E., Angell C. A., J. Chem. Phys., 2014, 140, 224502. DOI: https://doi.org/10.1063/1.4879057
Tsuchiya Y., Seymour E. F. W., J. Phys. C: Solid State Phys., 1982, 15, No. 22, L687–L695. DOI: https://doi.org/10.1088/0022-3719/15/22/002
Brazhkin V. V., Popova S. V., Voloshin R. N., Physica B, 1999, 265, 64–71. DOI: https://doi.org/10.1016/S0921-4526(98)01318-0
Cadien A., Hu Q. Y., Meng Y., Cheng Y. Q., Chen M. W., Shu J. F., Mao H. K., Sheng H. W., Phys. Rev. Lett., 2013, 110, 125503. DOI: https://doi.org/10.1103/PhysRevLett.110.125503
Angell C. A., J. Phys. Chem., 1971, 75, No. 24, 3698. DOI: https://doi.org/10.1021/j100693a010
Angell C. A., Annu. Rev. Phys. Chem., 2004, 55, 559–583. DOI: https://doi.org/10.1146/annurev.physchem.55.091602.094156
Poole P. H., Sciortino F., Essmann U., Stanley H. E., Nature, 1992, 360, 324–328. DOI: https://doi.org/10.1038/360324a0
Holten V., Anisimov M. A., Sci. Rep., 2012, 2, 713. DOI: https://doi.org/10.1038/srep00713
Holten V., Palmer J. C., Poole P. H., Debenedetti P. G., Anisimov M. A., J. Chem. Phys., 2014, 140, 104502. DOI: https://doi.org/10.1063/1.4867287
Gallo P., Amann-Winkel K., Angell C. A., Anisimov M. A., Caupin F., Chakravarty C., Lascaris E., Loerting T., Panagiotopoulos A. Z., Russo J., Sellberg J. A., Stanley H. E., Tanaka H., Vega C., Xu L., Pettersson L. G. M., Chem. Rev., 2016, 116, 7463–7500. DOI: https://doi.org/10.1021/acs.chemrev.5b00750
Biddle J. W., Singh R. S., Sparano E. M., Ricci F., González M. A., Valeriani C., Abascal J. L. F., Debenedetti P. G., Anisimov M. A., Caupin F., J. Chem. Phys., 2017, 146, 034502. DOI: https://doi.org/10.1063/1.4973546
Caupin F., Anisimov M. A., J. Chem. Phys., 2019, 151, 034503. DOI: https://doi.org/10.1063/1.5100228
Duška M., J. Chem. Phys., 2020, 152, 174501. DOI: https://doi.org/10.1063/5.0006431
Cummings P. T., Stell G., Mol. Phys., 1984, 51, No. 2, 253–287. DOI: https://doi.org/10.1080/00268978400100191
Kalyuzhnyi Yu. V., Stell G., Mol. Phys., 1993, 78, No. 5, 1247–1258. DOI: https://doi.org/10.1080/00268979300100821
Speedy R. J., Debenedetti P. G., Mol. Phys., 1994, 81, No. 1, 237–249. DOI: https://doi.org/10.1080/00268979400100161
Speedy R. J., Debenedetti P. G., Mol. Phys., 1996, 88, No. 5, 1293–1316. DOI: https://doi.org/10.1080/00268979609484512
Zaccarelli E., Buldyrev S.V., LaNave E., Moreno A. J., Saika-Voivod I., Sciortino F., Tartaglia P., Phys.Rev. Lett., 2005, 94, 218301. DOI: https://doi.org/10.1103/PhysRevLett.94.218301
Moreno A. J., Buldyrev S.V., LaNave E., Saika-Voivod I., Sciortino F., Tartaglia P., Zaccarelli E., Phys.Rev. Lett., 2005, 95, 157802. DOI: https://doi.org/10.1103/PhysRevLett.95.157802
Zaccarelli E., Saika-Voivod I., Buldyrev S. V., Moreno A. J., Tartaglia P., Sciortino F., J. Chem. Phys., 2006, 124, 124908. DOI: https://doi.org/10.1063/1.2177241
Kalyuzhnyi Yu. V., Protsykevytch I. A., Cummings P. T., Europhys. Lett., 2007, 80, No. 5, 56002. DOI: https://doi.org/10.1209/0295-5075/80/56002
Kalyuzhnyi Yu. V., Protsykevitch I. A., Cummings P. T., Condens. Matter Phys., 2007, 10, 553. DOI: https://doi.org/10.5488/CMP.10.4.553
Smallenburg F., Sciortino F., Nat. Phys., 2013, 9, 554–558. DOI: https://doi.org/10.1038/nphys2693
Reščič J., Kalyuzhnyi Yu. V., Cummings P. T., J. Phys.: Condens. Matter, 2016, 28, 414011. DOI: https://doi.org/10.1088/0953-8984/28/41/414011
Kalyuzhnyi Yu. V., Jamnik A., J. Mol. Liq., 2017, 228, 133–142. DOI: https://doi.org/10.1016/j.molliq.2016.09.121
Kalyuzhnyi Yu. V., Jamnik A., Cummings P. T., Soft Matter, 2017, 13, 1156. DOI: https://doi.org/10.1039/C6SM02572B
Stepanenko O. O., Jamnik A., Reščič J., Kalyuzhnyi Yu. V., Mol. Phys., 2019, 117, 3695–3702. DOI: https://doi.org/10.1080/00268976.2019.1662124
Kalyuzhnyi Yu. V., Jamnik A., Cummings P. T., J. Mol. Liq., 2023, 317, 121073. DOI: https://doi.org/10.1016/j.molliq.2022.121073
Shumovskyi N. A., Longo T. J., Buldyrev S. V., Anisimov M. A., Phys Rev. E, 2022, 106, 015305. DOI: https://doi.org/10.1103/PhysRevE.106.015305
Shumovskyi N. A., Buldyrev S. V., Phys. Rev. E, 2023, 107, 024140. DOI: https://doi.org/10.1103/PhysRevE.107.024140
Behler J., Chem. Rev., 2021, 121, 10037–10072. DOI: https://doi.org/10.1021/acs.chemrev.0c00868
Wigner E., Huntington H. B., J. Chem. Phys., 1935, 3, 764–770. DOI: https://doi.org/10.1063/1.1749590
Giguere P. A., J. Raman Spectrosc., 1984, 15, 354. DOI: https://doi.org/10.1002/jrs.1250150513
Buldyrev S. V., In: Aspects of Physical Biology, Lecture Notes in Physics, Vol. 752, Franzese G., Rubi M. (Eds.), Springer, Berlin, Heidelberg, 2008, 97–132.
Alder B. J., Wainwright T. E., J. Phys. Chem., 1959, 31, 459. DOI: https://doi.org/10.1063/1.1730376
Xu L.,Kumar P., Buldyrev S.V., Chen S. H., Poole P. H., Sciortino F., Stanley H. E., Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 16558–16562. DOI: https://doi.org/10.1073/pnas.0507870102
Xu L., Buldyrev S. V., Angell C. A., Stanley H. E., Phys. Rev. E, 2006, 74, 031108. DOI: https://doi.org/10.1103/PhysRevE.74.031108
Sun G., Wang Y., Lomakin A., Benedek G. B., Stanley H. E., Xu L., Buldyrev S. V., J. Chem. Phys., 2016, 145, 194901. DOI: https://doi.org/10.1063/1.4966972
Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A., Haak J. R., J. Chem. Phys., 1984, 81, 3684. DOI: https://doi.org/10.1063/1.448118
Xu L., Buldyrev S. V., Stanley H. E., Franzese G., Phys. Rev. Lett., 2012, 109, 095702. DOI: https://doi.org/10.1103/PhysRevLett.109.095702
Kincaid J. M., Stell G., Goldmark E., J. Chem. Phys., 1976, 65, 2172–2179. DOI: https://doi.org/10.1063/1.433373
Bolhuis P., Frenkel D., In: Frontiers in Materials Modelling and Design, Kumar V., Sengupta S., Raj B. (Eds.), Springer, Berlin, Heidelberg, 1998, 315–324. DOI: https://doi.org/10.1007/978-3-642-80478-6_36
Franzese G., Malescio G., Skibinsky A., Buldyrev S. V., Stanley H. E., Nature, 2001, 409, 692–695. DOI: https://doi.org/10.1038/35055514
Caupin F., Herbert E., C. R. Phys., 2006, 7, 1000–1017. DOI: https://doi.org/10.1016/j.crhy.2006.10.015
Poole P. H., Saika-Voivod I., Sciortino F., J. Phys.: Condens. Matter., 2005, 17, L431. DOI: https://doi.org/10.1088/0953-8984/17/43/L01
Espinosa J. R., Abascal J. L. F., Sedano L. F., Sanz E., Vega C., J. Chem. Phys., 2023, 158, 204505. DOI: https://doi.org/10.1063/5.0147345
Sastry S., Debenedetti P. G., Sciortino F., Stanley H. E., Phys. Rev. E, 1996, 53, 6144–6154. DOI: https://doi.org/10.1103/PhysRevE.53.6144
Wagner W., Pruß A., J. Phys. Chem. Ref. Data, 1999, 31, 387–535. DOI: https://doi.org/10.1063/1.1461829
Lide D. R. (Ed.), CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, CRC Press, Boca Raton, 85 edn., 2004.
Downloads
Published
License
Copyright (c) 2024 S. V. Buldyrev
This work is licensed under a Creative Commons Attribution 4.0 International License.