Critical, compensation and hysteresis behaviors studies in the ferrimagnetic Blume-Capel model with mixed half-integer spin-(3/2, 7/2): Exact recursion relations calculations

Authors

  • M. Kake Institute of Mathematic and Physical Sciences (IMSP), Dangbo, Benin
  • S. I. V. Hontinfinde Ecole Nationale Supérieure de Génie Mathématique et Modélisation (ENSGMM) d'Abomey, Bénin; University of Abomey-Calavi, Department of Physics, Benin; Ecole Nationale Supérieure de Génie Energétique et Procédés d'Abomey, Benin
  • M. Karimou Institute of Mathematic and Physical Sciences (IMSP), Dangbo, Benin; Laboratoire des Sciences d'Ingénierie et de Mathématique Appliquée (LSIMA), Benin; Ecole Nationale Supérieure de Génie Energétique et Procédés d’Abomey, Benin https://orcid.org/0000-0002-1422-6479
  • R. Houenou Institute of Mathematic and Physical Sciences (IMSP), Dangbo, Benin
  • E. Albayrak Erciyes University, Department of Physics, 38039, Kayseri, Turkey
  • R. A. A. Yessoufou Institute of Mathematic and Physical Sciences (IMSP), Dangbo, Benin; University of Abomey-Calavi, Department of Physics, Benin
  • A. Kpadonou Institute of Mathematic and Physical Sciences (IMSP), Dangbo, Benin; ENS and Laboratory of Physics and Applications (LPA) of Abomey, Benin

DOI:

https://doi.org/10.5488/CMP.27.43601

Keywords:

recursion relations, Blume–Capel ferrimagnetic system, ground-state, Bethe lattice, hysteresis loops

Abstract

The exact recursion relations are used to study the mixed half-integer spin-(3/2, 7/2) Blume-Capel Ising ferrimagnetic system on the Bethe lattice. Ground-state phase diagrams are computed in the (DA /q|J|, DB /q|J|) plane to reveal different possible ground states of the model. Using the thermal changes of the order-arameters, interesting temperature dependent phase diagrams are constructed in the (DA/|J|, kT/|J|), (DB/|J|, kT/|J|) planes as well as in the (D/|J|, kT/|J|) plane where D = DA = DB. It is revealed that the system exhibits first- and second-order phase transitions and compensation temperatures for specific model parameter values. Under the constraint of an external magnetic field, the model also produces multi-hysteresis behaviors as single, double and triple hysteresis cycles. Particularly, the impacts of the ferrimagnetic coupling  J on the remanent magnetization and the coercitive fields for selected values of the other physical parameters of the system are pointed out. Our numerical results are qualitatively consistent with those reported in the literature.

References

Suen J. S., Eskine J. L., Phys. Rev. Lett., 1997, 78, 3567. DOI: https://doi.org/10.1103/PhysRevLett.78.3567

Suen J. S., Lee M. H., Teeter G., Eskine J. L., Phys. Rev. B, 1999, 59, 4249. DOI: https://doi.org/10.1103/PhysRevB.59.4249

Jia L. P., Zhang Q., Yang B., Colloid Interface Sci. Commun., 2015, 9, 6.

Kaneyoshi T., Chem. Phys. Lett., 2019, 715, 72. DOI: https://doi.org/10.1016/j.cplett.2018.10.061

Kaneyoshi T., J. Supercond. Novel Magn., 2018, 31, 2149. DOI: https://doi.org/10.1007/s10948-017-4463-0

Kantar E., Keskin M., J. Magn. Magn. Mater., 2014, 349, 165. DOI: https://doi.org/10.1016/j.jmmm.2013.08.034

Bouda H., Bahmad L., Masrour R., Benyoussef A., J. Supercond. Novel Magn., 2019, 32, 1837. DOI: https://doi.org/10.1007/s10948-018-4894-2

Zeng H. , Li J., Liu J. P., Wang Z. L., Sun S. H., Nature, 2002, 420, 395. DOI: https://doi.org/10.1038/nature01208

De Lacheisserie E. D. T., Gignoux D., Schlenker M. (Eds.), Magnetism: II-Materials and Applications, Springer Science & Business Media, 2012.

Craik D. J., Magnetism: Principles and Applications, Wiley, 1995.

O’Handley R. C., Modern Magnetic Materials: Principles and Applications, Wiley, 2000.

Bahlagui T., Bouda H., El Kenz A., Bahmad L., Benyoussef A., Superlattices Microstruct., 2017, 110, 90. DOI: https://doi.org/10.1016/j.spmi.2017.09.001

De La Espriella N., Buendía G. M., J. Phys.: Condens. Matter, 2011, 23, 176003. DOI: https://doi.org/10.1088/0953-8984/23/17/176003

Karimou M., Yessoufou R., Hontinfinde F., Int. J. Mod. Phys. B, 2015, 29, 1550194. DOI: https://doi.org/10.1142/S0217984915501948

Masrour R., Jabar A., Bahmad L., Hamedoun M., Benyoussef A., J. Magn. Magn. Mater., 2017, 421 76. DOI: https://doi.org/10.1016/j.jmmm.2016.07.069

Karimou M., De La Espriella N., Physica A, 2019, 531, 121738. DOI: https://doi.org/10.1016/j.physa.2019.121738

Bahlagui T., El Kenz A., Benyoussef A., J. Supercond. Novel Magn., 2018, 31, 4179. DOI: https://doi.org/10.1007/s10948-018-4698-4

Montiel F. P., De La Espriella N., Madera J. C., J. Phys.: Conf. Ser., 2021, 2046, 012013. DOI: https://doi.org/10.1088/1742-6596/2046/1/012013

Nmaila B., Kadiri A., Ahllaamara R., Drissi L. B., Htoutou K., J. Supercond. Novel Magn., 2023, 36, 1181. DOI: https://doi.org/10.1007/s10948-023-06548-x

Bouda H., Bahlagui T., Bahmad L., Masrour R., El Kenz A., Benyoussef A., J. Supercond. Novel Magn., 2019, 32, 2539. DOI: https://doi.org/10.1007/s10948-018-4981-4

Madera J. C., De La Espriella N., Burgos R., Phys. Status Solidi B, 2023, 260, 2200517. DOI: https://doi.org/10.1002/pssb.202200517

Jiang W., Lo V. C., Bai B. D., Yang J., Physica A, 2010, 389, 2227. DOI: https://doi.org/10.1016/j.physa.2010.01.050

De La Espriella N., Karimou M., Buendía G. M., Phys. Status Solidi B, 2021, 258, 2000536. DOI: https://doi.org/10.1002/pssb.202000536

El Antari A., Zahir H., Hasnaoui A., Hachem N., Alrajhi A., Madani M., El Bouziani M., Int. J. Theor. Phys., 2018, 57, 2330. DOI: https://doi.org/10.1007/s10773-018-3756-9

Albayrak E., Yigit A., Phys. Lett. A, 2006, 353, 121. DOI: https://doi.org/10.3917/cis.121.0353

Pardoe H., Clark P. R., St. Pierre T. G., Moroz P., Jones S. K., Magn. Reson. Imaging, 2003, 21, 483. DOI: https://doi.org/10.1016/S0730-725X(03)00072-9

Qian K. Y., Song Y., Yan X., Dong L., Xue J., Xu Y., Wang B., Cao B., Hou Q., Peng W., Hu J., Jiang K., Chen S., Wang H., Lu Y., Biomaterials, 2020, 259, 120299. DOI: https://doi.org/10.1016/j.biomaterials.2020.120299

Caretta L., Mann M., Büttner F., Ueda K., Pfau B., Günther C. M., Hessing P., Churikova A., Klose C., Schneider M., Engel D., Marcus C., Bono D., Bagschik K., Eisebitt S., Beach G. S. D., Nat. Nanotechnol., 2018, 13, 1154. DOI: https://doi.org/10.1038/s41565-018-0255-3

Barker J., Atxitia U., J. Phys. Soc. Jpn., 2021, 90, 081001. DOI: https://doi.org/10.7566/JPSJ.90.081001

Ünal A. A., Valencia S., Radu F., Marchenko D., Merazzo K. J., Vázquez M., Sánchez-Barriga J., Phys. Rev. Appl., 2016, 5, 064007. DOI: https://doi.org/10.1103/PhysRevApplied.5.064007

Chappert C., Fert A., Van Dau F. N., Nat. Mater., 2007, 6, 813. DOI: https://doi.org/10.1038/nmat2024

Jungwirth T., Marti X.,Wadley P.,Wunderlich J., Nat. Nanotechnol., 2016, 11, 231. DOI: https://doi.org/10.1038/nnano.2016.18

Kim S. K., Beach G. S. D., Lee K. J., Ono T., Rasing T., Yang H., Nat. Mater., 2022, 21, 24. DOI: https://doi.org/10.1038/s41563-021-01139-4

Mohamad H. K., Zuhair A., J. Supercond. Novel Magn., 2020, 33, 1481.

Karimou M., Yessoufou R. A., Ngantso D. G., Hontinfinde F., Albayrak E., Condens. Matter Phys., 2019, 22, 33601. DOI: https://doi.org/10.5488/CMP.22.33601

Published

2024-12-30

How to Cite

[1]
M. Kake, “Critical, compensation and hysteresis behaviors studies in the ferrimagnetic Blume-Capel model with mixed half-integer spin-(3/2, 7/2): Exact recursion relations calculations”, Condens. Matter Phys., vol. 27, no. 4, p. 43601, Dec. 2024, doi: 10.5488/CMP.27.43601.

Similar Articles

11-20 of 41

You may also start an advanced similarity search for this article.