Effect of time-dependent sinusoidal electric field on the onset of electroconvection in a viscoelastic fluid layer
DOI:
https://doi.org/10.5488/cmp.27.43702Keywords:
convection, dielectric fluid, electric field, modulation, Oldroyd-B modelAbstract
Time-periodic electric field modulation of a viscoelastic dielectric fluid layer heated from below and cooled from above is examined using an Oldroyd-B type liquid. On the basis of small amplitudes of modulation, the regular perturbation method can be used to calculate the threshold for correction of the critical Rayleigh number. The dielectric constant is assumed to be a linear function of temperature. We show that electric field modulation frequency, electrical, Prandtl number, and viscoelastic parameters are related to the shift in the critical Rayleigh number and the possibility of subcritical convection for low-frequency modulation of the electric field. Rayleigh number, wavenumber, and frequency stability are determined based on free-free isothermal boundary conditions. The dielectrophoretic force is only destabilizing when an electrical field is modulated at a low frequency because it is associated with an unmodulated layer of dielectric fluid. As a result of the stress relaxation parameter in a sinusoidal electric field, the system is destabilized at low frequencies and stabilized at moderate and high frequencies. The effect of strain retardation on mechanical anisotropy is completely opposite. The stability characteristics are illustrated through graphs showing the numerical values of parameters.
References
Chandrasekhar S., Hydrodynamic and hydromagnetic stability, Courier Corporation, 2013.
Landau L. D., Lifshitz E. M., Pitaevskii L. P., Electrodynamics of continuous media, Course of theoretical physics, Vol. 8, Pergamon press, Oxford, second edn., 1984.
Takashima M., K. Ghosh A., J. Phys. Soc. Jpn., 1979, 47, No. 5, 1717–1722. DOI: https://doi.org/10.1143/JPSJ.47.1717
Takashima M., Hamabata H., J. Phys. Soc. Jpn., 1984, 53, No. 5, 1728–1736. DOI: https://doi.org/10.1143/JPSJ.53.1728
Maekawa T., Int. J. Heat Mass Transfer, 1992, f, No. 3, 613–621.
Castellanos A. E., Electrohydrodynamics, 380 In CISM Courses and Lectures, Springer, Vienna, 1998. DOI: https://doi.org/10.1007/978-3-7091-2522-9
Chen X., Cheng J., Yin X., Chin. Sci. Bull., 2003, 48, 1055–1063. DOI: https://doi.org/10.1007/BF03185753
Rudraiah N., Gayathri M., ASME J. Heat Transfer, 2009, 131, 101009–101015. DOI: https://doi.org/10.1115/1.3180709
Chang M.-H., Ruo A.-C., Chen F., J. Fluid Mech., 2009, 634, 191–215. DOI: https://doi.org/10.1017/S0022112009007782
Siddheshwar P., Radhakrishna D., Commun. Nonlinear Sci. Numer. Simul., 2012, 17, No. 7, 2883–2895. DOI: https://doi.org/10.1016/j.cnsns.2011.11.009
Nagouda S. S., Maruthamanikandan S., Int. J. Comput. Eng. Res., 2015, 11, No. 3, 1–10.
Balaji C., Rudresha C., Shree V. V., Maruthamanikandan S., J. Mines Met. Fuels, 2022, 70, 28–34. DOI: https://doi.org/10.18311/jmmf/2022/30664
Balaji C., Rudresha C., Shree V. V., Maruthamanikandan S., Iraqi J. Appl. Phys., 2022, 18, No. 4, 15–19, URL https://www.iasj.net/iasj/article/250846.
Shree V. V., Rudresha C., Balaji C., Maruthamanikandan S., J. Mines Met. Fuels, 2022, 98–103.
Shree V. V., Rudresha C., Balaji C., Maruthamanikandan S., East Eur. J. Phys., 2022, 112–117. DOI: https://doi.org/10.26565/2312-4334-2022-4-10
Green T., Phys. Fluids, 1968, 11, No. 7, 1410. DOI: https://doi.org/10.1063/1.1692123
Vest C. M., Arpaci V. S., J. Fluid Mech., 1969, 36, No. 3, 613–623. DOI: https://doi.org/10.1017/S0022112069001881
Li Z., Khayat R. E., Phys. Rev. E, 2005, 71, No. 6, 066305. DOI: https://doi.org/10.1103/PhysRevE.71.066305
Li Z., Khayat R. E., J. Fluid Mech., 2005, 529, 221–251. DOI: https://doi.org/10.1017/S0022112005003563
Rosenblat S., J. Non-Newtonian Fluid Mech., 1986, 21, No. 2, 201–223. DOI: https://doi.org/10.1016/0377-0257(86)80036-2
Larson R. G., Rheol. Acta, 1992, 31, No. 3, 213–263. DOI: https://doi.org/10.1007/BF00366504
Kolodner P., J. Non-Newtonian Fluid Mech., 1998, 75, No. 2-3, 167–192. DOI: https://doi.org/10.1016/S0377-0257(97)00095-5
Othman M. I., Int. J. Eng. Sci., 2001, 39, No. 11, 1217–1232. DOI: https://doi.org/10.1016/S0020-7225(00)00092-6
Othman M. I., Z. Angew. Math. Phys., 2004, 55, 468–482. DOI: https://doi.org/10.1007/s00033-003-1156-2
Maruthamanikandan S., Instabilities in ferromagnetic, dielectric and other complex liquids, Ph.D. thesis, Bangalore University, (India), 2005.
Malashetty M., Tan W., Swamy M., Phys. Fluids, 2009, 21, No. 8. DOI: https://doi.org/10.1063/1.3194288
Taj M., Maruthamanikandan S., Akbar S. K., Int. J. Eng. Res. Ind. Appl., 2013, 3, No. 2, 1742.
Abhimanyu P., Kaushik P., Mondal P. K., Chakraborty S., J. Non-Newtonian Fluid Mech., 2016, 231, 56–67. DOI: https://doi.org/10.1016/j.jnnfm.2016.03.006
Shokri H., Kayhani M., Norouzi M., Phys. Fluids, 2017, 29, No. 3. DOI: https://doi.org/10.1063/1.4977443
Roy K., Ponalagusamy R., Murthy P., Phys. Fluids, 2020, 32, No. 9. DOI: https://doi.org/10.1063/5.0020076
Semenov V., Fluid Dyn., 1993, 28, No. 5, 734–735. DOI: https://doi.org/10.1007/BF01050060
Smorodin B., Gershuni G., Velarde M., Int. J. Heat Mass Transfer, 1999, 42, No. 16, 3159–3168. DOI: https://doi.org/10.1016/S0017-9310(98)00351-2
Velarde M., Smorodin B., Fluid Dyn., 2000, 35, No. 3, 339–345. DOI: https://doi.org/10.1007/BF02697746
Rudresha C., Balaji C., Shree V. V., Maruthamanikandan S., J. Mines, Met. Fuels, 2022, 7, No. 3A, 35–41. DOI: https://doi.org/10.18311/jmmf/2022/30665
Rudresha C., Balaji C., Shree V. V., Maruthamanikandan S., J. Comput. Appl. Mech., 2022, 53, No. 4, 510–523.
Rudresha C., Balaji C., Shree V. V., Maruthamanikandan S., J. Phys. Stud., 2023, 27, No. 1. DOI: https://doi.org/10.30970/jps.27.1401
Rudresha C., Balaji C., Shree V. V., Maruthamanikandan S., East Eur. J. Phys., 2022, 4, 104–111. DOI: https://doi.org/10.26565/2312-4334-2022-4-09
Oldroyd J. G., Proc. R. Soc. London, Ser. A, 1950, 200, No. 1063, 523–541. DOI: https://doi.org/10.1098/rspa.1950.0035
Venezian G., J. Fluid Mech., 1969, 35, No. 2, 243–254. DOI: https://doi.org/10.1017/S0022112069001091
Downloads
Published
License
Copyright (c) 2024 C. Rudresha, C. Balaji, V. Vidya Shree, S. Maruthamanikandan
This work is licensed under a Creative Commons Attribution 4.0 International License.