Effect of time-dependent sinusoidal electric field on the onset of electroconvection in a viscoelastic fluid layer

Authors

DOI:

https://doi.org/10.5488/cmp.27.43702

Keywords:

convection, dielectric fluid, electric field, modulation, Oldroyd-B model

Abstract

Time-periodic electric field modulation of a viscoelastic dielectric fluid layer heated from below and cooled from above is examined using an Oldroyd-B type liquid. On the basis of small amplitudes of modulation, the regular perturbation method can be used to calculate the threshold for correction of the critical Rayleigh number. The dielectric constant is assumed to be a linear function of temperature. We show that electric field modulation frequency, electrical, Prandtl number, and viscoelastic parameters are related to the shift in the critical Rayleigh number and the possibility of subcritical convection for low-frequency modulation of the electric field. Rayleigh number, wavenumber, and frequency stability are determined based on free-free isothermal boundary conditions. The dielectrophoretic force is only destabilizing when an electrical field is modulated at a low frequency because it is associated with an unmodulated layer of dielectric fluid. As a result of the stress relaxation parameter in a sinusoidal electric field, the system is destabilized at low frequencies and stabilized at moderate and high frequencies. The effect of strain retardation on mechanical anisotropy is completely opposite. The stability characteristics are illustrated through graphs showing the numerical values of parameters.

References

Chandrasekhar S., Hydrodynamic and hydromagnetic stability, Courier Corporation, 2013.

Landau L. D., Lifshitz E. M., Pitaevskii L. P., Electrodynamics of continuous media, Course of theoretical physics, Vol. 8, Pergamon press, Oxford, second edn., 1984.

Takashima M., K. Ghosh A., J. Phys. Soc. Jpn., 1979, 47, No. 5, 1717–1722. DOI: https://doi.org/10.1143/JPSJ.47.1717

Takashima M., Hamabata H., J. Phys. Soc. Jpn., 1984, 53, No. 5, 1728–1736. DOI: https://doi.org/10.1143/JPSJ.53.1728

Maekawa T., Int. J. Heat Mass Transfer, 1992, f, No. 3, 613–621.

Castellanos A. E., Electrohydrodynamics, 380 In CISM Courses and Lectures, Springer, Vienna, 1998. DOI: https://doi.org/10.1007/978-3-7091-2522-9

Chen X., Cheng J., Yin X., Chin. Sci. Bull., 2003, 48, 1055–1063. DOI: https://doi.org/10.1007/BF03185753

Rudraiah N., Gayathri M., ASME J. Heat Transfer, 2009, 131, 101009–101015. DOI: https://doi.org/10.1115/1.3180709

Chang M.-H., Ruo A.-C., Chen F., J. Fluid Mech., 2009, 634, 191–215. DOI: https://doi.org/10.1017/S0022112009007782

Siddheshwar P., Radhakrishna D., Commun. Nonlinear Sci. Numer. Simul., 2012, 17, No. 7, 2883–2895. DOI: https://doi.org/10.1016/j.cnsns.2011.11.009

Nagouda S. S., Maruthamanikandan S., Int. J. Comput. Eng. Res., 2015, 11, No. 3, 1–10.

Balaji C., Rudresha C., Shree V. V., Maruthamanikandan S., J. Mines Met. Fuels, 2022, 70, 28–34. DOI: https://doi.org/10.18311/jmmf/2022/30664

Balaji C., Rudresha C., Shree V. V., Maruthamanikandan S., Iraqi J. Appl. Phys., 2022, 18, No. 4, 15–19, URL https://www.iasj.net/iasj/article/250846.

Shree V. V., Rudresha C., Balaji C., Maruthamanikandan S., J. Mines Met. Fuels, 2022, 98–103.

Shree V. V., Rudresha C., Balaji C., Maruthamanikandan S., East Eur. J. Phys., 2022, 112–117. DOI: https://doi.org/10.26565/2312-4334-2022-4-10

Green T., Phys. Fluids, 1968, 11, No. 7, 1410. DOI: https://doi.org/10.1063/1.1692123

Vest C. M., Arpaci V. S., J. Fluid Mech., 1969, 36, No. 3, 613–623. DOI: https://doi.org/10.1017/S0022112069001881

Li Z., Khayat R. E., Phys. Rev. E, 2005, 71, No. 6, 066305. DOI: https://doi.org/10.1103/PhysRevE.71.066305

Li Z., Khayat R. E., J. Fluid Mech., 2005, 529, 221–251. DOI: https://doi.org/10.1017/S0022112005003563

Rosenblat S., J. Non-Newtonian Fluid Mech., 1986, 21, No. 2, 201–223. DOI: https://doi.org/10.1016/0377-0257(86)80036-2

Larson R. G., Rheol. Acta, 1992, 31, No. 3, 213–263. DOI: https://doi.org/10.1007/BF00366504

Kolodner P., J. Non-Newtonian Fluid Mech., 1998, 75, No. 2-3, 167–192. DOI: https://doi.org/10.1016/S0377-0257(97)00095-5

Othman M. I., Int. J. Eng. Sci., 2001, 39, No. 11, 1217–1232. DOI: https://doi.org/10.1016/S0020-7225(00)00092-6

Othman M. I., Z. Angew. Math. Phys., 2004, 55, 468–482. DOI: https://doi.org/10.1007/s00033-003-1156-2

Maruthamanikandan S., Instabilities in ferromagnetic, dielectric and other complex liquids, Ph.D. thesis, Bangalore University, (India), 2005.

Malashetty M., Tan W., Swamy M., Phys. Fluids, 2009, 21, No. 8. DOI: https://doi.org/10.1063/1.3194288

Taj M., Maruthamanikandan S., Akbar S. K., Int. J. Eng. Res. Ind. Appl., 2013, 3, No. 2, 1742.

Abhimanyu P., Kaushik P., Mondal P. K., Chakraborty S., J. Non-Newtonian Fluid Mech., 2016, 231, 56–67. DOI: https://doi.org/10.1016/j.jnnfm.2016.03.006

Shokri H., Kayhani M., Norouzi M., Phys. Fluids, 2017, 29, No. 3. DOI: https://doi.org/10.1063/1.4977443

Roy K., Ponalagusamy R., Murthy P., Phys. Fluids, 2020, 32, No. 9. DOI: https://doi.org/10.1063/5.0020076

Semenov V., Fluid Dyn., 1993, 28, No. 5, 734–735. DOI: https://doi.org/10.1007/BF01050060

Smorodin B., Gershuni G., Velarde M., Int. J. Heat Mass Transfer, 1999, 42, No. 16, 3159–3168. DOI: https://doi.org/10.1016/S0017-9310(98)00351-2

Velarde M., Smorodin B., Fluid Dyn., 2000, 35, No. 3, 339–345. DOI: https://doi.org/10.1007/BF02697746

Rudresha C., Balaji C., Shree V. V., Maruthamanikandan S., J. Mines, Met. Fuels, 2022, 7, No. 3A, 35–41. DOI: https://doi.org/10.18311/jmmf/2022/30665

Rudresha C., Balaji C., Shree V. V., Maruthamanikandan S., J. Comput. Appl. Mech., 2022, 53, No. 4, 510–523.

Rudresha C., Balaji C., Shree V. V., Maruthamanikandan S., J. Phys. Stud., 2023, 27, No. 1. DOI: https://doi.org/10.30970/jps.27.1401

Rudresha C., Balaji C., Shree V. V., Maruthamanikandan S., East Eur. J. Phys., 2022, 4, 104–111. DOI: https://doi.org/10.26565/2312-4334-2022-4-09

Oldroyd J. G., Proc. R. Soc. London, Ser. A, 1950, 200, No. 1063, 523–541. DOI: https://doi.org/10.1098/rspa.1950.0035

Venezian G., J. Fluid Mech., 1969, 35, No. 2, 243–254. DOI: https://doi.org/10.1017/S0022112069001091

Published

2024-12-30

Issue

Section

Articles

Categories

How to Cite

[1]
C. Rudresha, C. Balaji, V. Vidya Shree, and S. Maruthamanikandan, “Effect of time-dependent sinusoidal electric field on the onset of electroconvection in a viscoelastic fluid layer”, Condens. Matter Phys., vol. 27, no. 4, p. 43702, Dec. 2024, doi: 10.5488/cmp.27.43702.

Similar Articles

11-20 of 43

You may also start an advanced similarity search for this article.