First principle study of electronic, magnetic and thermoelectric properties of Co2YPb (Y = Tc, Ti, Zr and Hf) full Heusler: Application to embedded automotive systems
DOI:
https://doi.org/10.5488/cmp.28.43701Keywords:
hermoelectricity, half metallicity, magnetic compounds, embedded systems, mBJ-GGAAbstract
In this study, theoretical investigation on structural, electronic, magnetic, elastic and thermoelectric properties of the full Heusler Co2YPb (Y = Tc, Ti, Zr and Hf) alloys have been performed within density functional theory (DFT). The exchange and correlation potential is addressed using two approximations: the generalized gradient approximation (GGA) and the GGA augmented by the Tran–Blaha-modified Becke–Johnson (mBj-GGA) approximation, which provides a more accurate description of the energy band gap. The electronic and magnetic properties reveal that the full-Heusler alloys Co2YPb (with Y = Tc, Ti, Zr, and Hf) display half-metallic ferromagnetic behavior. Furthermore, the elastic properties suggest that Co2YPb are mechanically stable, with ductile characteristics. p-type full Heusler alloys exhibit positive Seebeck coefficients and high ZT values, indicating good thermoelectric performance in terms of electrical and thermal conductivity. This leads us to the conclusions that these compounds are very interesting in improving the performance of embedded automotive systems and can also be used in spintronic devices.
References
Wollmann L., Nayak A. K., Parkin S. S. P., Felser C., Annu. Rev. Mater. Res., 2017, 47, No. 1, 247–270. DOI: https://doi.org/10.1146/annurev-matsci-070616-123928
Bradley A. J., Rodgers J. W., Proc. R. Soc. London, Ser. A, 1934, 144, No. 852, 340–359. DOI: https://doi.org/10.1098/rspa.1934.0053
Chadov S., Graf T., Chadova K., Dai X., Gasper F., Fecher G. H., Felser C., Phys. Rev. Lett., 2011, 107, No. 4, 047202. DOI: https://doi.org/10.1103/PhysRevLett.107.047202
Hara M., Shibata J., Kimura T., Otani Y., Appl. Phys. Lett., 2006, 88, 082501. DOI: https://doi.org/10.1063/1.2177358
Wolf S. A., Awschalom D. D., Buhrman R. A., Daughton J. M., von Molnár S., Roukes M. L., Chtchelkanova A. Y., Tregger D. M., Science, 2001, 294, No. 5546, 1488–1495. DOI: https://doi.org/10.1126/science.1065389
de Groot R. A., Mueller F. M., van Engen P. G., Buschow K. H. J., Phys. Rev. Lett., 1983, 50, No. 25, 2024. DOI: https://doi.org/10.1103/PhysRevLett.50.2024
Kawasaki J. K., Chatterjee S., Canfield P. C., MRS Bull., 2022, 47, No. 6, 555–558. DOI: https://doi.org/10.1557/s43577-022-00355-w
Ouardi S., Fecher G. H., Balke B., Kozina X., Stryganyuk G., Felser C., Lowitzer S., Ködderitzsch D., Ebert H., Ikenaga E., Phys. Rev. B, 2010, 82, No. 8, 085108.
Kübler J.,William A. R., Sommers C. B., Phys. Rev. B, 1983, 28, No. 4, 1745. DOI: https://doi.org/10.1103/PhysRevB.28.1745
Junxiang Y., Kumar P., Cabero-Piris M., Aarts J., Phys. Rev. Mater., 2023, 7, No. 10, 104408. DOI: https://doi.org/10.1103/PhysRevMaterials.7.104408
Kostenko M. G., Lukoyanov M. V., Shreder E. I., JETP Lett., 2018, 107, 126–128. DOI: https://doi.org/10.1134/S002136401802008X
Ivanshin V. A., Litvinova T. O., Sukhanov A. A., Sokolov D. A., Aronson M. C., JETP Lett., 2009, 90, 116–119. DOI: https://doi.org/10.1134/S0021364009140070
Marchenkov V. V., Irkhin V. Yu., Marchenkova E. B., Semiannikova A. A., Korenistov P. S., Phys. Lett. A, 2023, 471, 128803. DOI: https://doi.org/10.1016/j.physleta.2023.128803
Graf T., Casper F., Winterlik J., Balke B., Fecher G. H., Felser C., Z. Anorg. Allg. Chem., 2009, 635, No. 6–7, 976–981. DOI: https://doi.org/10.1002/zaac.200900036
Salaheldeen M., Garcia-Gomez A., Ipatov M., Corte-Leon P., Zhukova V., Blanco J. M., Zhukov A., Chemosensors, 2022, 10, No. 6, 225. DOI: https://doi.org/10.3390/chemosensors10060225
Benatmane S., Cherid S., JETP Lett., 2020, 111, 694–702. DOI: https://doi.org/10.1134/S0021364020120012
Zitouni A., Remil G., Bouadjemi B., Benstaali W., Lantri T., Matougui M., Houari M., Aziz Z., Bentata S., JETP Lett., 2020, 112, 290–298. DOI: https://doi.org/10.1134/S0021364020170026
Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1998, 80, No. 4, 891. DOI: https://doi.org/10.1103/PhysRevLett.80.891
Tran F., Blaha P., Phys. Rev. Lett., 2009, 102, No. 22, 226401. DOI: https://doi.org/10.1103/PhysRevLett.102.226401
Tran F., Blaha P., Schwarz K., J. Phys.: Condens. Matter, 2007, 19, No. 19, 196208. DOI: https://doi.org/10.1088/0953-8984/19/19/196208
Pagare G., Chouhan S. S., Soni P., Sanyal S. P., Rajagopalan M., Comput. Mater. Sci., 2010, 50, 538–544. DOI: https://doi.org/10.1016/j.commatsci.2010.09.016
Monkhorst H. J., Pack J. D., Phys. Rev. B, 1976, 13, No. 12, 5188. DOI: https://doi.org/10.1103/PhysRevB.13.5188
Houari M., Bouadjemi B., Haid S., Matougui M., Lantri T., Aziz Z., Bentata S., Bouhafs B., Indian J. Phys., 2020, 94, 455. DOI: https://doi.org/10.1007/s12648-019-01480-0
Mentefa A., Boufadi F. Z., Ameri M., Gaid F. O., Bellagoun L., Odeh A. A., Al-Douri Y., J. Supercond. Novel Magn., 2021, 34, 269–283. DOI: https://doi.org/10.1007/s10948-020-05741-6
Murnaghan F. D., Proc. Natl. Acad. Sci. U.S.A., 1944, 30, No. 9, 244–247. DOI: https://doi.org/10.1073/pnas.30.9.244
Karimian N., Ahmadian F., Solid State Commun., 2015, 223, 60–66. DOI: https://doi.org/10.1016/j.ssc.2015.09.005
Idriss S., Labrim H., Ziti S., Bahmad L., Appl. Phys. A, 2020, 126, 190. DOI: https://doi.org/10.1007/s00339-020-3354-6
Houari M., Mesbah S., Lantri T., Bouadjemi B., Boucherdoud A., Khatar A., Akham A., Haid S., Achour B., Bentata S., Matougui M., J. Mol. Model., 2024, 30, 110. DOI: https://doi.org/10.1007/s00894-024-05903-6
Galanakis I., Dederichs P. H., Papanikolaou N., Phys. Rev. B, 2002, 66, No. 17, 174429. DOI: https://doi.org/10.1103/PhysRevB.66.174429
Zheng N., Jin Y., J. Magn. Magn. Mater., 2012, 324, No. 19, 3099–3104. DOI: https://doi.org/10.1016/j.jmmm.2012.05.009
Birsan A., Curr. Appl. Phys., 2014, 14, No. 11, 1434–1436. DOI: https://doi.org/10.1016/j.cap.2014.08.009
Bechmann R., Phys. Rev., 1958, 110, No. 5, 1060. DOI: https://doi.org/10.1103/PhysRev.110.1060
Bruhns O. T., J. Appl. Math. Mech., 2014, 94, No. 3, 187–202. DOI: https://doi.org/10.1002/zamm.201300243
Hao Y. J., Zhang L., Chen X. R., Li Y. H., He H. L., J. Phys.: Condens. Matter, 2008, 20, No. 23, 235230. DOI: https://doi.org/10.1088/0953-8984/20/23/235230
Benatmane S., Affane M., Bouali Y., Bouadjemi B., Cherid S., Benstaali W., Rev. Mex. Fis., 2023, 69, No. 1, 011003. DOI: https://doi.org/10.31349/RevMexFis.69.011003
Madsen G. K. H., Singh D. J., Comput. Phys. Commun., 2006, 175, No. 1, 67–71. DOI: https://doi.org/10.1016/j.cpc.2006.03.007
Boudjeltia M. A., Aziz Z., Terkhi S., Bennani M. A., Khandy S. A., Bouadjemi B., Benidris M., Bentata S., Mod. Phys. Lett. B, 2021, 35, No. 23, 2150400. DOI: https://doi.org/10.1142/S0217984921504005
Chen S., Ren Z., Mater. Today, 2013, 16, No. 10, 387. DOI: https://doi.org/10.1016/j.mattod.2013.09.015
Graf T., Felser C., Parkin S. S. P., Prog. Solid State Chem., 2011, 39, No. 1, 1. DOI: https://doi.org/10.1016/j.progsolidstchem.2011.02.001
Albaladejo-Siguan M., Baird E. C., Becker-Koch D., Li Y., Rogach A. L., Vaynzof Y., Adv. Energy Mater., 2021, 11, 2003457. DOI: https://doi.org/10.1002/aenm.202003457
Downloads
Published
License
Copyright (c) 2025 N. Saidi, A. Abbad, W. Benstaali, K. Bahnes

This work is licensed under a Creative Commons Attribution 4.0 International License.







