A computational study of thermoelectric conversion in the PbSexTe1−x semiconductor alloys
DOI:
https://doi.org/10.5488/cmp.28.43705Keywords:
lead, DFT, semiconductor IV-VI, electronic properties, thermoelectric propertiesAbstract
The present theoretical study focuses on the structural, electronic and thermoelectric properties of PbTe, PbSe and their ternary alloys PbSexTe1−x, using the density functional theory (DFT) by the full potential linearised augmented plane wave (FP-LAPW) method implemented in Wien2k code. Structural properties were performed by using the generalized gradient approximation of Perdew Burke and Ernzenhof (GGA-PBE) scheme. The results show that the calculated lattice parameters are in good agreement with theoretical data previously obtained. For electronic properties, we noticed that for all the compounds of PbSexTe1−x, we have a direct band gap in L point. For thermoelectric properties, we used BoltzTraP2 code and Gibbs2 code. Our results show that the PbSexTe1−x compounds have reached a value of 2.55 for the figure of merit, which indicates that our material is a good thermoelectric candidate.
References
Kumar A., Thorbole A., Gupta R. K., Mater. Sci. Semicond. Process., 2025, 185, 108943. DOI: https://doi.org/10.1016/j.mssp.2024.108943
Andrea L., Modélisation du transport thermique dans des matériaux thermoélectriques, Ph.D. thesis, Université Pierre et Marie Curie-Paris VI, 2016, (in French).
Pandit A., Haleoot R., Hamad B., J. Electron. Mater., 2020, 49, 586–592. DOI: https://doi.org/10.1007/s11664-019-07715-4
Wei X.-P., Du L.-L., Shen J., Sun Z.-Q., Zhang Z.-M., Chang W.-L., Tao X., Mater. Sci. Semicond. Process., 2024, 169, 107856. DOI: https://doi.org/10.1016/j.mssp.2023.107856
Jawad M., Rahman A. U., Rafique Q., Azam S., Ijaz F., Mater. Sci. Semicond. Process., 2024, 173, 108105. DOI: https://doi.org/10.1016/j.mssp.2023.108105
Witting I. T., Chasapis T. C., Ricci F., Peters M., Heinz N. A., Hautier G., Snyder G. J., Adv. Electron. Mater., 2019, 5, No. 6, 1800904. DOI: https://doi.org/10.1002/aelm.201800904
Park O., Park S. J., Kim H.-S., Lee S.W., Heo M., Kim S.-i., Mater. Sci. Semicond. Process., 2023, 166, 107723. DOI: https://doi.org/10.1016/j.mssp.2023.107723
Zair A., Nabil Brahmi B.-E., Bekhechi S., Int. J. Mod. Phys. C, 2023, 34, No. 10, 2350130. DOI: https://doi.org/10.1142/S0129183123501309
Khan A. A., Khan I., Ahmad I., Ali Z., Mater. Sci. Semicond. Process., 2016, 48, 85–94. DOI: https://doi.org/10.1016/j.mssp.2016.03.012
Naeemullah Murtaza G., Khenata R., Hassan N., Naeem S., Khalid M., Bin Omran S., Comput. Mater. Sci., 2014, 83, 496–503. DOI: https://doi.org/10.1016/j.commatsci.2013.10.033
Wei S.-H., Zunger A., Phys. Rev. B, 1997, 55, No. 20, 13605. DOI: https://doi.org/10.1103/PhysRevB.55.13605
Zhang Y., Ke X., Chen C., Yang J., Kent P., Phys. Rev. B, 2009, 80, No. 2, 024304. DOI: https://doi.org/10.1103/PhysRevB.80.024304
Bauer Pereira P., Sergueev I., Gorsse S., Dadda J., Müller E., Hermann R. P., Phys. Status Solidi B, 2013, 250, No. 7, 1300–1307. DOI: https://doi.org/10.1002/pssb.201248412
Chen X., Zhang K., Ramalingom Pillai A. D., Baumgart H., Kochergin V., Meet. Abstr., 2014, MA2014-02, No. 30, 1601–1601. DOI: https://doi.org/10.1149/MA2014-02/30/1601
Shah S. H., Huang T., Shakeel S., Khan S., Ashraf M. W., Murtaza G., Mater. Sci. Semicond. Process., 2024, 178, 108400. DOI: https://doi.org/10.1016/j.mssp.2024.108400
Louie S. G., Chan Y.-H., da Jornada F. H., Li Z., Qiu D. Y., Nat. Mater., 2021, 20, No. 6, 728–735. DOI: https://doi.org/10.1038/s41563-021-01015-1
Kovalenko M., Bovgyra O., Kapustianyk V., Kozachenko O., Condens. Matter Phys., 2024, 27, No. 2, 23702. DOI: https://doi.org/10.5488/cmp.27.23702
Bradji B., Benkhedir M., Condens. Matter Phys., 2024, 27, No. 4, 43602. DOI: https://doi.org/10.5488/cmp.27.43602
Kozina A., Aguilar M., Pizio O., Sokołowski S., Condens. Matter Phys., 2024, 27, No. 1, 13604. DOI: https://doi.org/10.5488/cmp.27.13604
Sayah M., Zeffane S., Mokhtari M., Dahmane F., Zekri L., Khenata R., Zekri N., Condens. Matter Phys., 2021, 24, No. 2, 23703. DOI: https://doi.org/10.5488/CMP.24.23703
Petersen M., Wagner F., Hufnagel L., Scheffler M., Blaha P., Schwarz K., Comput. Phys. Commun., 2000, 126, No. 3, 294–309. DOI: https://doi.org/10.1016/S0010-4655(99)00495-6
Adnane M., Djoudi L., Merabet M., Boucharef M., Dahmane F., Benalia S., Mokhtari M., Rached D., Condens. Matter Phys., 2020, 23, No. 3, 33705. DOI: https://doi.org/10.5488/CMP.23.33705
Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1998, 80, No. 4, 891–891. DOI: https://doi.org/10.1103/PhysRevLett.80.891
Murnaghan F. D., Proc. Natl. Acad. Sci. U. S. A., 1944, 30, No. 9, 244–247. DOI: https://doi.org/10.1073/pnas.30.9.244
Boukhris N., Meradji H., Ghemid S., Drablia S., Hassan F. E. H., Phys. Scr., 2011, 83, No. 6, 065701. DOI: https://doi.org/10.1088/0031-8949/83/06/065701
Madsen G. K., Carrete J., Verstraete M. J., Comput. Phys. Commun., 2018, 231, 140–145. DOI: https://doi.org/10.1016/j.cpc.2018.05.010
Otero-de-la Roza A., Abbasi-Pérez D., Luaña V., Comput. Phys. Commun., 2011, 182, No. 10, 2232–2248. DOI: https://doi.org/10.1016/j.cpc.2011.05.009
Otero-de-la Roza A., Luaña V., Comput. Phys. Commun., 2011, 182, No. 8, 1708–1720. DOI: https://doi.org/10.1016/j.cpc.2011.04.016
Bouchenaki M., Karaouzène L., Brahmi B., Slimane M. K., Condens. Matter Phys., 2025, 28, No. 1, 13701. DOI: https://doi.org/10.5488/cmp.28.13701
Agrawal B. K., Agrawal S., Yadav P., Kumar S., J. Phys.: Condens. Matter, 1997, 9, No. 8, 1763. DOI: https://doi.org/10.1088/0953-8984/9/8/008
Blaha P., Schwarz K., Tran F., Laskowski R., Madsen G. K., Marks L. D., J. Chem. Phys., 2020, 152, No. 7, 074101. DOI: https://doi.org/10.1063/1.5143061
Lach-Hab M., Papaconstantopoulos D. A., Mehl M. J., J. Phys. Chem. Solids, 2002, 63, No. 5, 833–841. DOI: https://doi.org/10.1016/S0022-3697(01)00237-2
Brahmi B.-e. N., Ouahrani T., Boufatah R. M., Boudefla R., Bekhechi S., Merad A. E., Comput. Condens. Matter, 2018, 17, e00337. DOI: https://doi.org/10.1016/j.cocom.2018.e00337
Vegard L., Z. Phys., 1921, 5, No. 1, 17–26. DOI: https://doi.org/10.1007/BF01349680
Chanda S., Ghosh D., Debnath B., Debbarma M., Bhattacharjee R., Chattopadhyaya S., J. Comput. Electron., 2020, 19, No. 1, 1–25. DOI: https://doi.org/10.1007/s10825-019-01409-0
Ravindra N. M., Auluck S., Srivastava V. K., Phys. Status Solidi A, 1979, 52, No. 2, K151–K155. DOI: https://doi.org/10.1002/pssa.2210520255
Labidi M., Meradji H., Ghemid S., Labidi S., El Haj Hassan F., Mod. Phys. Lett. B, 2011, 25, No. 07, 473–486. DOI: https://doi.org/10.1142/S0217984911025729
Charifi Z., Baaziz H., Bouarissa N., Int. J. Mod. Phys. B, 2004, 18, No. 01, 137–142. DOI: https://doi.org/10.1142/S0217979204023696
Van Vechten J., Bergstresser T., Phys. Rev. B, 1970, 1, No. 8, 3351. DOI: https://doi.org/10.1103/PhysRevB.1.3351
Slack G. A., J. Phys. Chem. Solids, 1973, 34, No. 2, 321–335. DOI: https://doi.org/10.1016/0022-3697(73)90092-9
Downloads
Published
License
Copyright (c) 2025 M. Kaid Slimane, B. N. Brahmi, M. Bouchenaki, S. Bekhechi

This work is licensed under a Creative Commons Attribution 4.0 International License.







