Ab initio study of mechanical and functional properties of novel CaZnC and CaZnSi half-Heusler materials
DOI:
https://doi.org/10.5488/cmp.28.43706Keywords:
optical properties, structural stability, thermodynamic stability, half-Heusler, thermoelectric materialsAbstract
This research work introduces the DFT through FP-LAPW+lo technique in WIEN2k software to obtain information about structural, thermoelectric, and optoelectronic characteristics of CaZnC and CaZnSi materials. The structural optimization was performed using PBE-GGA functional, while the rest of the characteristics were obtained with the PBE-GGA + TB-mBJ approach. The thermoelectric parameters were evaluated using BoltzTraP software. The elastic constants and other mechanical parameters were computed by utilizing the ELAST code within the WIEN2k software, while the thermodynamic characteristics were evaluated using the Gibbs2 program. The findings show a correlation between atomic composition and lattice dimensions while finding that CaZnC has a direct (Γ–Γ) band gap of 1.186 eV, whereas CaZnSi has an indirect (Γ–X) band gap of 1.067 eV. The optical studies of the compounds show potential applications for photovoltaics while the thermoelectric results find optimized power factors and figure of merit values for energy conversion performance. The elastic parameters of CaZnC and CaZnSi demonstrate material stability and brittleness. Lastly, the thermodynamic evaluations provide information about the thermal mechanism and disorder of the materials. As a result, this research work provides significant advancements in the understanding of the fundamentals of these compounds and highlights their promising applications in renewable energy technologies.
References
Nazir A., Khera E. A., Manzoor M., Al-Asbahi B. A., Sharma R., Mater. Sci. Eng., B, 2024, 303, 117338. DOI: https://doi.org/10.1016/j.mseb.2024.117338
Kumari S., Bairwa J. K., Radius: J. Sci. Technol., 2024, 1, 241002.
Rani M., Kamlesh P. K., Kumawat S., Rani U., Arora G., Verma A. S., Physica B, 2024, 680, 415645. DOI: https://doi.org/10.1016/j.physb.2023.415645
Rolania M. C., Kamlesh P. K., Kumar P., Sharma G., Verma A. S., Mod. Phys. Lett. B, 2024, 39, 2550081. DOI: https://doi.org/10.1142/S0217984925500812
Pandit N., Singh R., Joshi T. K., Shukla A., Kamlesh P. K., Dubey A., Verma A. S., J. Comput. Electron., 2025, 24, 1–19. DOI: https://doi.org/10.1007/s10825-024-02245-7
Meena A., Bairwa J. K., Kumari S., Rani U., Kamlesh P. K., Singh A. P., Verma A. S., Phys. Chem. Solids, 2025, 26, 10–22. DOI: https://doi.org/10.15330/pcss.26.1.10-22
Bairwa J. K., Kumari S., Radius: J. Sci. Technol., 2024, 1, 241004.
Li Y., Huang X., Sheriff H. K., Forrest S. R., Nat. Rev. Mater., 2023, 8, 186–201. DOI: https://doi.org/10.1038/s41578-022-00514-0
Saini A., Lone U. F., Phys. Status Solidi B, 2024, 261, 2300244.
Menaria G. L., Rani U., Kamlesh P. K., Singh R., Rani M., Singh N., Verma A. S., Mod. Phys. Lett. B, 2024, 38, 2450283. DOI: https://doi.org/10.1142/S021798492450283X
Zhao Y., Li X., Wu Q., Feng Y., Wu B., Mater. Sci. Semicond. Process., 2024, 178, 108415. DOI: https://doi.org/10.1016/j.mssp.2024.108415
Huang Y., Lv F., Han S., Chen M., Wang Y., Lou Q., Zhu T., Science, 2025, 387, 1187–1192. DOI: https://doi.org/10.1126/science.ads9584
Goyal M., Sinha M. M., Phys. Status Solidi B, 2023, 260, 2200463. DOI: https://doi.org/10.1002/pssb.202200463
Nikitin A. M., Pan Y., Mao X., Jehee R., Araizi G. K., Huang Y. K., De Visser A., J. Phys.: Condens. Matter, 2015, 27, 275701. DOI: https://doi.org/10.1088/0953-8984/27/27/275701
Sattar M. A., Javed M., Al Bouzieh N., Benkraouda M., Amrane N., Mater. Sci. Semicond. Process., 2023, 155, 107233. DOI: https://doi.org/10.1016/j.mssp.2022.107233
Verma P., Singh C., Kamlesh P. K., Kaur K., Verma A. S., J. Mol. Model., 2023, 29, 23. DOI: https://doi.org/10.1007/s00894-022-05433-z
Zhu H., Li W., Nozariasbmarz A., Liu N., Zhang Y., Priya S., Poudel B., Nat. Commun., 2023, 14, 3300. DOI: https://doi.org/10.1038/s41467-023-38446-0
Kamlesh P. K., Gautam R., Kumari S., Verma A. S., Physica B, 2021, 615, 412536. DOI: https://doi.org/10.1016/j.physb.2020.412536
Heusler F., Verh. Dtsch. Phys. Ges., 1903, 5, 219.
Lin H., Wray L. A., Xia Y., Xu S., Jia S., Cava R. J., Hasan M. Z., Nat. Mater., 2010, 9, 546–549. DOI: https://doi.org/10.1038/nmat2771
Liu J., Zhao Y., Dai Z., Ni J., Meng S., Comput. Mater. Sci., 2020, 185, 109960. DOI: https://doi.org/10.1016/j.commatsci.2020.109960
Gruhn T., Phys. Rev. B, 2010, 82, 125210. DOI: https://doi.org/10.1103/PhysRevB.82.125210
Belmiloud N., Boutaiba F., Belabbes A., Ferhat M., Bechstedt F., Phys. Status Solidi B, 2016, 253, 889–894. DOI: https://doi.org/10.1002/pssb.201552674
Azouaoui A., Harbi A., Moutaabbid M., Benzakour N., Hourmatallah A., Bouslykhane K., Chahboun A., Int. J. Mod. Phys. B, 2024, 38, 2450122. DOI: https://doi.org/10.1142/S0217979224501224
Xiong J. L., Yu F., Liu J., Liu X. C., Liu Q., Liu K., Xia S. Q., ACS Appl. Energy Mater., 2022, 5, 3793–3799. DOI: https://doi.org/10.1021/acsaem.2c00279
Wu H. Y., Chen Y. H., Yin P. F., Zhang Z. R., Han X. Y., Li X. Y., Philos. Mag. Lett., 2019, 99, 29–38. DOI: https://doi.org/10.1080/09500839.2019.1612960
Jin L., Zhang X., He T., Meng W., Dai X., Liu G., J. Mater. Chem. C, 2019, 7, 10694–10699. DOI: https://doi.org/10.1039/C9TC03464A
Yi X., Li W. Q., Li Z. H., Zhou P., Ma Z. S., Sun L. Z., J. Mater. Chem. C, 2019, 7, 15375–15381. DOI: https://doi.org/10.1039/C9TC04096J
Ciftci Y. O., In: Advances in Optoelectronic Materials, Ikhmayies S. J., Kurt H. H. (Eds.), Springer International Publishing, Cham, 2021, 125–144.
Wang X., Ding G., Cheng Z., Surucu G., Wang X. L., Yang T., J. Adv. Res., 2020, 23, 95–100. DOI: https://doi.org/10.1016/j.jare.2020.01.017
Blaha P., Schwarz K., Tran F., Laskowski R., Madsen G. K., Marks L. D., J. Chem. Phys., 2020, 152. DOI: https://doi.org/10.1063/1.5143061
Singh D. J., Nordstrom L., Planewaves, Pseudopotentials, and the LAPW Method, Springer, 2006.
Kohn W., Sham L. J., Phys. Rev., 1965, 140, A1133. DOI: https://doi.org/10.1103/PhysRev.140.A1133
Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865
Tran F., Blaha P., Phys. Rev. Lett., 2009, 102, 226401. DOI: https://doi.org/10.1103/PhysRevLett.102.226401
Madsen G. K., Singh D. J., Comput. Phys. Commun., 2006, 175, 67–71. DOI: https://doi.org/10.1016/j.cpc.2006.03.007
Otero-de-la-Roza A., Abbasi-Perez D., Luana V., Comput. Phys. Commun., 2011, 182, 2232–2248. DOI: https://doi.org/10.1016/j.cpc.2011.05.009
Kamlesh P. K., Agrawal R., Rani U., Verma A. S., Mater. Chem. Phys., 2022, 275, 125233. DOI: https://doi.org/10.1016/j.matchemphys.2021.125233
Saim A., Belkharroubi F., Boufadi F. Z., Ameri I., Blaha L. F., Tebboune A., Abd El-Rehim A. F., J. Electron. Mater., 2022, 51, 4014–4028. DOI: https://doi.org/10.1007/s11664-022-09659-8
Rasul M. N., Hu T., Mehmood M., Andleeb F., Akbar M. S., Manzoor A., Hussain A., Mater. Sci. Semicond. Process., 2024, 172, 108024. DOI: https://doi.org/10.1016/j.mssp.2023.108024
Srivastava S., Rani U., Rani M., Toual Y., Dubey A., Pandit N., Kamlesh P. K., Next Mater., 2025, 8, 100724. DOI: https://doi.org/10.1016/j.nxmate.2025.100724
Rani U., Kamlesh P. K., Shukla A., Verma A. S., J. Solid State Chem., 2021, 300, 122246. DOI: https://doi.org/10.1016/j.jssc.2021.122246
Lantri T., Bentata S., Bouadjemi B., Benstaali W., Bouhafs B., Abbad A., Zitouni A., J. Magn. Magn. Mater., 2016, 419, 74–83. DOI: https://doi.org/10.1016/j.jmmm.2016.06.012
Menaria G. L., Rani U., Kamlesh P. K., Rani M., Singh N., Sharma D. C., Verma A. S., Int. J. Mod. Phys. B, 2025, 39, 2550052. DOI: https://doi.org/10.1142/S0217979225500523
Sharma S., Verma A. S., Jindal V. K., Mater. Res. Bull., 2014, 53, 218–233. DOI: https://doi.org/10.1016/j.materresbull.2014.02.021
Kamlesh P. K., Kumari S., Verma A. S., Phys. Scr., 2020, 95, 095806. DOI: https://doi.org/10.1088/1402-4896/abab36
Slack G. A., Solid State Phys., 1979, 34, 1–71. DOI: https://doi.org/10.1016/S0081-1947(08)60359-8
Jia T., Chen G., Zhang Y., Phys. Rev. B, 2017, 95, 155206. DOI: https://doi.org/10.1103/PhysRevB.95.155206
Nielsen M. D., Ozolins V., Heremans J. P., Energy Environ. Sci., 2013, 6, 570–578. DOI: https://doi.org/10.1039/C2EE23391F
Schwall M., Balke B., Phys. Chem. Chem. Phys., 2013, 15, 1868–1872. DOI: https://doi.org/10.1039/C2CP43946H
Chen S., Ren Z., Mater. Today, 2013, 16, 387–395. DOI: https://doi.org/10.1016/j.mattod.2013.09.015
Poon S. J., Metals, 2018, 8, 989. DOI: https://doi.org/10.3390/met8120989
Chen L., Gao S., Zeng X., Dehkordi A., Tritt T. M., Poon S. J., Appl. Phys. Lett., 2015, 107, 041902. DOI: https://doi.org/10.1063/1.4927661
Jochym P. T., Parlinski K., Krzywiec P., Comput. Mater. Sci., 2004, 29, 414–418. DOI: https://doi.org/10.1016/j.commatsci.2003.11.004
Wdowik U. D., Parlinski K., Siegel A., J. Phys. Chem. Solids, 2006, 67, 1477–1483. DOI: https://doi.org/10.1016/j.jpcs.2006.02.001
Milman V., Winkler B., Probert M. I. J., J. Phys.: Condens. Matter, 2005, 17, 2233. DOI: https://doi.org/10.1088/0953-8984/17/13/019
Karki B. B., Stixrude L., Clark S. J., Warren M. C., Ackland G. J., Crain J., Am. Mineral., 1997, 82, 51–60. DOI: https://doi.org/10.2138/am-1997-1-207
Voigt W., Ann. Phys. Chem., 1889, 274, 573–587. DOI: https://doi.org/10.1002/andp.18892741206
Reuss A., ZAMM, 1929, 9, 49–58. DOI: https://doi.org/10.1002/zamm.19290090104
Hill R., Proc. Phys. Soc. A, 1952, 65, 349–354. DOI: https://doi.org/10.1088/0370-1298/65/5/307
Pugh S. F., Philos. Mag., 1954, 45, 823–843. DOI: https://doi.org/10.1080/14786440808520496
Liu Y., Hu W. C., Li D. J., Zeng X. Q., Xu C. S., Yang X. J., Intermetallics, 2012, 31, 257–263. DOI: https://doi.org/10.1016/j.intermet.2012.07.017
Pettifor D. G., Mater. Sci. Technol., 1992, 8, 345–349. DOI: https://doi.org/10.1179/026708392790170801
Pokluda J., Cerny M., Sob M., Umeno Y., Prog. Mater. Sci., 2015, 73, 127–158. DOI: https://doi.org/10.1016/j.pmatsci.2015.04.001
Kleinman L., Phys. Rev., 1962, 128, 2614–2621. DOI: https://doi.org/10.1103/PhysRev.128.2614
Han Y., Wu Y., Li T., Khenata R., Yang T., Wang X., Materials, 2018, 11, 797. DOI: https://doi.org/10.3390/ma11050797
Pathak A. K., Vazhappilly T., Phys. Status Solidi B, 2018, 255, 1700668. DOI: https://doi.org/10.1002/pssb.201700668
Mayer B., Anton H., Bott E., Methfessel M., Sticht J., Harris J., Schmidt P. C., Intermetallics, 2003, 11, 23–32. DOI: https://doi.org/10.1016/S0966-9795(02)00127-9
Mahmood Q., Yaseen M., Hassan M., Rashid M. S., Tlili I., Laref A., Mater. Res. Express, 2019, 6, 045901. DOI: https://doi.org/10.1088/2053-1591/aaf997
Kuma S., Woldemariam M. M., Adv. Condens. Matter Phys., 2019. DOI: https://doi.org/10.1155/2019/3176148
Sun Z., Li S., Ahuja R., Schneider J. M., Solid State Commun., 2004, 129, 589–592. DOI: https://doi.org/10.1016/j.ssc.2003.12.008
Francisco E., Blanco M. A., Sanjurjo G., Phys. Rev. B, 2001, 63, 094107. DOI: https://doi.org/10.1103/PhysRevB.63.094107
Singh P., Sharma S., Kumari S., Saraswat V. K., Sharma D., Verma A. S., Semiconductors, 2017, 51, 679–687. DOI: https://doi.org/10.1134/S1063782617050232
Peng X. C., Xing L. L., Fang Z. H., Physica B, 2007, 394, 111–114. DOI: https://doi.org/10.1016/j.physb.2007.02.022
Bairwa J. K., Kamlesh P. K., Rani U., Singh R., Gupta R., Kumari S., Verma A. S., Mater. Sci. Energy Technol., 2024, 7, 61–72. DOI: https://doi.org/10.1016/j.mset.2023.07.005
Bennani M. A., Aziz Z., Terkhi S., Elandaloussi E. H., Bouadjemi B., Chenine D., Bentata S., J. Supercond. Novel Magn., 2021, 34, 211–225. DOI: https://doi.org/10.1007/s10948-020-05677-x
Downloads
Published
License
Copyright (c) 2025 P. K. Kamlesh, U. K. Gupta, S. Verma, M. Rani, Y. Toual, A. S. Verma

This work is licensed under a Creative Commons Attribution 4.0 International License.







