Ab initio study of mechanical and functional properties of novel CaZnC and CaZnSi half-Heusler materials

Authors

DOI:

https://doi.org/10.5488/cmp.28.43706

Keywords:

optical properties, structural stability, thermodynamic stability, half-Heusler, thermoelectric materials

Abstract

This research work introduces the DFT through FP-LAPW+lo technique in WIEN2k software to obtain information about structural, thermoelectric, and optoelectronic characteristics of CaZnC and CaZnSi materials. The structural optimization was performed using PBE-GGA functional, while the rest of the characteristics were obtained with the PBE-GGA + TB-mBJ approach. The thermoelectric parameters were evaluated using BoltzTraP software. The elastic constants and other mechanical parameters were computed by utilizing the ELAST code within the WIEN2k software, while the thermodynamic characteristics were evaluated using the Gibbs2 program. The findings show a correlation between atomic composition and lattice dimensions while finding that CaZnC has a direct (Γ–Γ) band gap of 1.186 eV, whereas CaZnSi has an indirect (Γ–X) band gap of 1.067 eV. The optical studies of the compounds show potential applications for photovoltaics while the thermoelectric results find optimized power factors and figure of merit values for energy conversion performance. The elastic parameters of CaZnC and CaZnSi demonstrate material stability and brittleness. Lastly, the thermodynamic evaluations provide information about the thermal mechanism and disorder of the materials. As a result, this research work provides significant advancements in the understanding of the fundamentals of these compounds and highlights their promising applications in renewable energy technologies.

References

Nazir A., Khera E. A., Manzoor M., Al-Asbahi B. A., Sharma R., Mater. Sci. Eng., B, 2024, 303, 117338. DOI: https://doi.org/10.1016/j.mseb.2024.117338

Kumari S., Bairwa J. K., Radius: J. Sci. Technol., 2024, 1, 241002.

Rani M., Kamlesh P. K., Kumawat S., Rani U., Arora G., Verma A. S., Physica B, 2024, 680, 415645. DOI: https://doi.org/10.1016/j.physb.2023.415645

Rolania M. C., Kamlesh P. K., Kumar P., Sharma G., Verma A. S., Mod. Phys. Lett. B, 2024, 39, 2550081. DOI: https://doi.org/10.1142/S0217984925500812

Pandit N., Singh R., Joshi T. K., Shukla A., Kamlesh P. K., Dubey A., Verma A. S., J. Comput. Electron., 2025, 24, 1–19. DOI: https://doi.org/10.1007/s10825-024-02245-7

Meena A., Bairwa J. K., Kumari S., Rani U., Kamlesh P. K., Singh A. P., Verma A. S., Phys. Chem. Solids, 2025, 26, 10–22. DOI: https://doi.org/10.15330/pcss.26.1.10-22

Bairwa J. K., Kumari S., Radius: J. Sci. Technol., 2024, 1, 241004.

Li Y., Huang X., Sheriff H. K., Forrest S. R., Nat. Rev. Mater., 2023, 8, 186–201. DOI: https://doi.org/10.1038/s41578-022-00514-0

Saini A., Lone U. F., Phys. Status Solidi B, 2024, 261, 2300244.

Menaria G. L., Rani U., Kamlesh P. K., Singh R., Rani M., Singh N., Verma A. S., Mod. Phys. Lett. B, 2024, 38, 2450283. DOI: https://doi.org/10.1142/S021798492450283X

Zhao Y., Li X., Wu Q., Feng Y., Wu B., Mater. Sci. Semicond. Process., 2024, 178, 108415. DOI: https://doi.org/10.1016/j.mssp.2024.108415

Huang Y., Lv F., Han S., Chen M., Wang Y., Lou Q., Zhu T., Science, 2025, 387, 1187–1192. DOI: https://doi.org/10.1126/science.ads9584

Goyal M., Sinha M. M., Phys. Status Solidi B, 2023, 260, 2200463. DOI: https://doi.org/10.1002/pssb.202200463

Nikitin A. M., Pan Y., Mao X., Jehee R., Araizi G. K., Huang Y. K., De Visser A., J. Phys.: Condens. Matter, 2015, 27, 275701. DOI: https://doi.org/10.1088/0953-8984/27/27/275701

Sattar M. A., Javed M., Al Bouzieh N., Benkraouda M., Amrane N., Mater. Sci. Semicond. Process., 2023, 155, 107233. DOI: https://doi.org/10.1016/j.mssp.2022.107233

Verma P., Singh C., Kamlesh P. K., Kaur K., Verma A. S., J. Mol. Model., 2023, 29, 23. DOI: https://doi.org/10.1007/s00894-022-05433-z

Zhu H., Li W., Nozariasbmarz A., Liu N., Zhang Y., Priya S., Poudel B., Nat. Commun., 2023, 14, 3300. DOI: https://doi.org/10.1038/s41467-023-38446-0

Kamlesh P. K., Gautam R., Kumari S., Verma A. S., Physica B, 2021, 615, 412536. DOI: https://doi.org/10.1016/j.physb.2020.412536

Heusler F., Verh. Dtsch. Phys. Ges., 1903, 5, 219.

Lin H., Wray L. A., Xia Y., Xu S., Jia S., Cava R. J., Hasan M. Z., Nat. Mater., 2010, 9, 546–549. DOI: https://doi.org/10.1038/nmat2771

Liu J., Zhao Y., Dai Z., Ni J., Meng S., Comput. Mater. Sci., 2020, 185, 109960. DOI: https://doi.org/10.1016/j.commatsci.2020.109960

Gruhn T., Phys. Rev. B, 2010, 82, 125210. DOI: https://doi.org/10.1103/PhysRevB.82.125210

Belmiloud N., Boutaiba F., Belabbes A., Ferhat M., Bechstedt F., Phys. Status Solidi B, 2016, 253, 889–894. DOI: https://doi.org/10.1002/pssb.201552674

Azouaoui A., Harbi A., Moutaabbid M., Benzakour N., Hourmatallah A., Bouslykhane K., Chahboun A., Int. J. Mod. Phys. B, 2024, 38, 2450122. DOI: https://doi.org/10.1142/S0217979224501224

Xiong J. L., Yu F., Liu J., Liu X. C., Liu Q., Liu K., Xia S. Q., ACS Appl. Energy Mater., 2022, 5, 3793–3799. DOI: https://doi.org/10.1021/acsaem.2c00279

Wu H. Y., Chen Y. H., Yin P. F., Zhang Z. R., Han X. Y., Li X. Y., Philos. Mag. Lett., 2019, 99, 29–38. DOI: https://doi.org/10.1080/09500839.2019.1612960

Jin L., Zhang X., He T., Meng W., Dai X., Liu G., J. Mater. Chem. C, 2019, 7, 10694–10699. DOI: https://doi.org/10.1039/C9TC03464A

Yi X., Li W. Q., Li Z. H., Zhou P., Ma Z. S., Sun L. Z., J. Mater. Chem. C, 2019, 7, 15375–15381. DOI: https://doi.org/10.1039/C9TC04096J

Ciftci Y. O., In: Advances in Optoelectronic Materials, Ikhmayies S. J., Kurt H. H. (Eds.), Springer International Publishing, Cham, 2021, 125–144.

Wang X., Ding G., Cheng Z., Surucu G., Wang X. L., Yang T., J. Adv. Res., 2020, 23, 95–100. DOI: https://doi.org/10.1016/j.jare.2020.01.017

Blaha P., Schwarz K., Tran F., Laskowski R., Madsen G. K., Marks L. D., J. Chem. Phys., 2020, 152. DOI: https://doi.org/10.1063/1.5143061

Singh D. J., Nordstrom L., Planewaves, Pseudopotentials, and the LAPW Method, Springer, 2006.

Kohn W., Sham L. J., Phys. Rev., 1965, 140, A1133. DOI: https://doi.org/10.1103/PhysRev.140.A1133

Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865

Tran F., Blaha P., Phys. Rev. Lett., 2009, 102, 226401. DOI: https://doi.org/10.1103/PhysRevLett.102.226401

Madsen G. K., Singh D. J., Comput. Phys. Commun., 2006, 175, 67–71. DOI: https://doi.org/10.1016/j.cpc.2006.03.007

Otero-de-la-Roza A., Abbasi-Perez D., Luana V., Comput. Phys. Commun., 2011, 182, 2232–2248. DOI: https://doi.org/10.1016/j.cpc.2011.05.009

Kamlesh P. K., Agrawal R., Rani U., Verma A. S., Mater. Chem. Phys., 2022, 275, 125233. DOI: https://doi.org/10.1016/j.matchemphys.2021.125233

Saim A., Belkharroubi F., Boufadi F. Z., Ameri I., Blaha L. F., Tebboune A., Abd El-Rehim A. F., J. Electron. Mater., 2022, 51, 4014–4028. DOI: https://doi.org/10.1007/s11664-022-09659-8

Rasul M. N., Hu T., Mehmood M., Andleeb F., Akbar M. S., Manzoor A., Hussain A., Mater. Sci. Semicond. Process., 2024, 172, 108024. DOI: https://doi.org/10.1016/j.mssp.2023.108024

Srivastava S., Rani U., Rani M., Toual Y., Dubey A., Pandit N., Kamlesh P. K., Next Mater., 2025, 8, 100724. DOI: https://doi.org/10.1016/j.nxmate.2025.100724

Rani U., Kamlesh P. K., Shukla A., Verma A. S., J. Solid State Chem., 2021, 300, 122246. DOI: https://doi.org/10.1016/j.jssc.2021.122246

Lantri T., Bentata S., Bouadjemi B., Benstaali W., Bouhafs B., Abbad A., Zitouni A., J. Magn. Magn. Mater., 2016, 419, 74–83. DOI: https://doi.org/10.1016/j.jmmm.2016.06.012

Menaria G. L., Rani U., Kamlesh P. K., Rani M., Singh N., Sharma D. C., Verma A. S., Int. J. Mod. Phys. B, 2025, 39, 2550052. DOI: https://doi.org/10.1142/S0217979225500523

Sharma S., Verma A. S., Jindal V. K., Mater. Res. Bull., 2014, 53, 218–233. DOI: https://doi.org/10.1016/j.materresbull.2014.02.021

Kamlesh P. K., Kumari S., Verma A. S., Phys. Scr., 2020, 95, 095806. DOI: https://doi.org/10.1088/1402-4896/abab36

Slack G. A., Solid State Phys., 1979, 34, 1–71. DOI: https://doi.org/10.1016/S0081-1947(08)60359-8

Jia T., Chen G., Zhang Y., Phys. Rev. B, 2017, 95, 155206. DOI: https://doi.org/10.1103/PhysRevB.95.155206

Nielsen M. D., Ozolins V., Heremans J. P., Energy Environ. Sci., 2013, 6, 570–578. DOI: https://doi.org/10.1039/C2EE23391F

Schwall M., Balke B., Phys. Chem. Chem. Phys., 2013, 15, 1868–1872. DOI: https://doi.org/10.1039/C2CP43946H

Chen S., Ren Z., Mater. Today, 2013, 16, 387–395. DOI: https://doi.org/10.1016/j.mattod.2013.09.015

Poon S. J., Metals, 2018, 8, 989. DOI: https://doi.org/10.3390/met8120989

Chen L., Gao S., Zeng X., Dehkordi A., Tritt T. M., Poon S. J., Appl. Phys. Lett., 2015, 107, 041902. DOI: https://doi.org/10.1063/1.4927661

Jochym P. T., Parlinski K., Krzywiec P., Comput. Mater. Sci., 2004, 29, 414–418. DOI: https://doi.org/10.1016/j.commatsci.2003.11.004

Wdowik U. D., Parlinski K., Siegel A., J. Phys. Chem. Solids, 2006, 67, 1477–1483. DOI: https://doi.org/10.1016/j.jpcs.2006.02.001

Milman V., Winkler B., Probert M. I. J., J. Phys.: Condens. Matter, 2005, 17, 2233. DOI: https://doi.org/10.1088/0953-8984/17/13/019

Karki B. B., Stixrude L., Clark S. J., Warren M. C., Ackland G. J., Crain J., Am. Mineral., 1997, 82, 51–60. DOI: https://doi.org/10.2138/am-1997-1-207

Voigt W., Ann. Phys. Chem., 1889, 274, 573–587. DOI: https://doi.org/10.1002/andp.18892741206

Reuss A., ZAMM, 1929, 9, 49–58. DOI: https://doi.org/10.1002/zamm.19290090104

Hill R., Proc. Phys. Soc. A, 1952, 65, 349–354. DOI: https://doi.org/10.1088/0370-1298/65/5/307

Pugh S. F., Philos. Mag., 1954, 45, 823–843. DOI: https://doi.org/10.1080/14786440808520496

Liu Y., Hu W. C., Li D. J., Zeng X. Q., Xu C. S., Yang X. J., Intermetallics, 2012, 31, 257–263. DOI: https://doi.org/10.1016/j.intermet.2012.07.017

Pettifor D. G., Mater. Sci. Technol., 1992, 8, 345–349. DOI: https://doi.org/10.1179/026708392790170801

Pokluda J., Cerny M., Sob M., Umeno Y., Prog. Mater. Sci., 2015, 73, 127–158. DOI: https://doi.org/10.1016/j.pmatsci.2015.04.001

Kleinman L., Phys. Rev., 1962, 128, 2614–2621. DOI: https://doi.org/10.1103/PhysRev.128.2614

Han Y., Wu Y., Li T., Khenata R., Yang T., Wang X., Materials, 2018, 11, 797. DOI: https://doi.org/10.3390/ma11050797

Pathak A. K., Vazhappilly T., Phys. Status Solidi B, 2018, 255, 1700668. DOI: https://doi.org/10.1002/pssb.201700668

Mayer B., Anton H., Bott E., Methfessel M., Sticht J., Harris J., Schmidt P. C., Intermetallics, 2003, 11, 23–32. DOI: https://doi.org/10.1016/S0966-9795(02)00127-9

Mahmood Q., Yaseen M., Hassan M., Rashid M. S., Tlili I., Laref A., Mater. Res. Express, 2019, 6, 045901. DOI: https://doi.org/10.1088/2053-1591/aaf997

Kuma S., Woldemariam M. M., Adv. Condens. Matter Phys., 2019. DOI: https://doi.org/10.1155/2019/3176148

Sun Z., Li S., Ahuja R., Schneider J. M., Solid State Commun., 2004, 129, 589–592. DOI: https://doi.org/10.1016/j.ssc.2003.12.008

Francisco E., Blanco M. A., Sanjurjo G., Phys. Rev. B, 2001, 63, 094107. DOI: https://doi.org/10.1103/PhysRevB.63.094107

Singh P., Sharma S., Kumari S., Saraswat V. K., Sharma D., Verma A. S., Semiconductors, 2017, 51, 679–687. DOI: https://doi.org/10.1134/S1063782617050232

Peng X. C., Xing L. L., Fang Z. H., Physica B, 2007, 394, 111–114. DOI: https://doi.org/10.1016/j.physb.2007.02.022

Bairwa J. K., Kamlesh P. K., Rani U., Singh R., Gupta R., Kumari S., Verma A. S., Mater. Sci. Energy Technol., 2024, 7, 61–72. DOI: https://doi.org/10.1016/j.mset.2023.07.005

Bennani M. A., Aziz Z., Terkhi S., Elandaloussi E. H., Bouadjemi B., Chenine D., Bentata S., J. Supercond. Novel Magn., 2021, 34, 211–225. DOI: https://doi.org/10.1007/s10948-020-05677-x

Published

2025-12-22

How to Cite

[1]
P. K. Kamlesh, U. K. Gupta, S. Verma, M. Rani, Y. Toual, and A. S. Verma, “Ab initio study of mechanical and functional properties of novel CaZnC and CaZnSi half-Heusler materials”, Condens. Matter Phys., vol. 28, no. 4, p. 43706, Dec. 2025, doi: 10.5488/cmp.28.43706.

Similar Articles

1-10 of 81

You may also start an advanced similarity search for this article.