Revisiting the wetting behavior of solid surfaces by water-like models within a density functional theory
DOI:
https://doi.org/10.5488/cmp.27.13604Keywords:
water, graphite, density functional, wetting, adsorptionAbstract
We perform the analysis of predictions of a classical density functional theory for associating fluids with different association strength concerned with wetting of solid surfaces. The four associating sites water-like models with non-associative square-well attraction parametrized by Clark et al. [Mol. Phys., 2006, 104, 3561] are considered. The fluid-solid potential is assumed to have a 10-4-3 functional form. The growth of water film on the substrate upon changing the chemical potential is described. The wetting and prewetting critical temperatures, as well as the prewetting phase diagram are evaluated for different fluid-solid attraction strength from the analysis of the adsorption isotherms. Moreover, the temperature dependence of the contact angle is obtained from the Young equation. It yields estimates for the wetting temperature as well. Theoretical findings are compared with experimental results and in a few cases with data from computer simulations. The theory is successful and quite accurate in describing the wetting temperature and contact angle changes with temperature for different values of fluid-substrate attraction. Moreover, the method provides an easy tool to study other associating fluids on solids of importance for chemical engineering, in comparison with laboratory experiments and computer simulations.
References
Ilnytskyi J., Wilson M. R., Comput. Phys. Commun., 2002, 134, 23–32, https://doi.org/10.1016/S0010-4655(00)00187-9. DOI: https://doi.org/10.1016/S0010-4655(00)00187-9
Ilnytskyi J., Toshchevikov V., Saphiannikova M., Soft Matter, 2019, 15, 9894–9908, https://doi.org/10.1039/C9SM01853K. DOI: https://doi.org/10.1039/C9SM01853K
Ilnytskyi J. M., Wilson M. R., J. Mol. Liq., 2001, 92, 21–28, https://doi.org/10.1016/S0167-7322(01)00174-X. DOI: https://doi.org/10.1016/S0167-7322(01)00174-X
Sokolowski S., Ilnytskyi J., Pizio O., Condens. Matter Phys., 2014, 17, 12601, https://doi.org/10.5488/CMP.17.12601. DOI: https://doi.org/10.5488/CMP.17.12601
Ilnytskyi J., Patsahan T., Pizio O., J. Mol. Liq., 2016, 223, 707–715, https://doi.org/10.1016/j.molliq.2016.08.098. DOI: https://doi.org/10.1016/j.molliq.2016.08.098
Ilnytskyi J., Sokolowski S., Pizio O., Phys. Rev. E, 1999, 5, 4161–4168, https://doi.org/10.1103/PhysRevE.59.4161. DOI: https://doi.org/10.1103/PhysRevE.59.4161
Ilnytsky J., Patrykiejew A., Sokolowski S., Pizio O., J. Phys. Chem. B, 1999, 103, 868–871, https://doi.org/10.1021/jp983302. DOI: https://doi.org/10.1021/jp983302k
De Gennes P.-G., Brochard-Wyart F., Quéré D., Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer, New York, 2004, https://doi.org/10.1007/978-0-387-21656-0. DOI: https://doi.org/10.1007/978-0-387-21656-0
Ruckenstein E., Berim G.,Wetting: Theory and Experiments, Two-Volume Set, CRC Press, 1st Ed., Boca Raton, 2018, https://doi.org/10.1201/9780429487972. DOI: https://doi.org/10.1201/9780429401824-1
Starov V. M., Velarde M. G., Wetting and Spreading Dynamics, CRC Press, 2nd Ed., Boca Raton, 2019, https://doi.org/10.1201/9780429506246. DOI: https://doi.org/10.1201/9780429506246
Bonn D., Eggers J., Indekeu J., Meunier J., Rolley E., Rev. Mod. Phys., 2009 81, 739–805, https://doi.org/10.1103/RevModPhys.81.739. DOI: https://doi.org/10.1103/RevModPhys.81.739
Anantharaju N., Panchagnula M. V., Vedantam S., Length Scale Effects inWetting of Chemically Heterogeneous Surfaces, in: Contact Angle, Wettability and Adhesion, Vol. 6, 53–64, Ed. K. L. Mittal, Koninklijke Brill NV, Leiden, 2009, https://doi.org/10.1201/b12247. Anantharaju N., Panchagnula M. V., Vedantam S., In: Contact Angle,Wettability and Adhesion, Vol. 6, Mittal K. L. (Ed.), Koninklijke Brill NV, Leiden, 2009, 53–64, https://doi.org/10.1201/b1224. DOI: https://doi.org/10.1163/ej.9789004169326.i-400.25
Dietrich S., Popescu M. N., Rauscher M., J. Phys.: Condens. Matter, 2005, 17, S577–S593, https://doi.org/10.1088/0953-8984/8/47/004. DOI: https://doi.org/10.1088/0953-8984/17/9/017
Yatsyshin P., Kalliadasis S., J. Fluid Mech., 2021, 913, A45, https://doi.org/10.1017/jfm.2020.1167. DOI: https://doi.org/10.1017/jfm.2020.1167
Mistura G., Pierno M., Adv. Phys.: X, 2017, 2, 591–607, https://doi.org/10.1080/23746149.2017.1336940. DOI: https://doi.org/10.1080/23746149.2017.1336940
Li H., Li A., Zhao Z., Li M., Song Y., Small, 2020, 1, 2000028, https://doi.org/10.1002/sstr.202000028. DOI: https://doi.org/10.1002/sstr.202000028
Wang J., Xiao L., Liao G., Zhang Y., Guo L., Arns C. H., Sun Z., Sci. Rep., 2018, 8, 1–14, https://doi.org/10.1038/s41598-018-31803-w. DOI: https://doi.org/10.1038/s41598-018-31803-w
Pizio O., Sokolowski S., Mol. Phys, 2022, 120, e2011454, https://doi.org/10.1080/00268976.2021.2011454. DOI: https://doi.org/10.1080/00268976.2021.2011454
Pizio O., Sokołowski S., In: Encyclopedia of Solid-Liquid Interfaces, Elsevier, 2024, 114–125, https://doi.org/10.1016/B978-0-323-85669-0.00067-2. DOI: https://doi.org/10.1016/B978-0-323-85669-0.00067-2
Pusztai L., Pizio O., Sokolowski S., J. Chem. Phys., 2008, 129, 184103, https://doi.org/10.1063/1.2976578. DOI: https://doi.org/10.1063/1.2976578
Müller E. A., Gubbins K. E., Ind. Eng. Chem. Res., 2001, 40, 2193, https://doi.org/10.1021/ie000773w. DOI: https://doi.org/10.1021/ie000773w
Clark G. N., Haslam A. J., Galindo A., Jackson G., Mol. Phys., 2006, 104 3561–3581, https://doi.org/10.1080/00268970601081475. DOI: https://doi.org/10.1080/00268970601081475
Zhao H., Ding Y., McCabe C., J. Chem. Phys., 2007, 127, 084514, https://doi.org/10.1063/1.2756038. DOI: https://doi.org/10.1063/1.2756038
Patrykiejew A., Sokolowski S., Pizio O., In: Surface and interface science: Solid-gas interfaces II, Vol. 6, Wandelt K. (Ed.), chap. 46, John Wiley & Sons, Ltd, 2016, 883–1253, https://doi.org/10.1002/9783527680580.ch46. DOI: https://doi.org/10.1002/9783527680580.ch46
Yu Y.-X., Wu J., J. Chem. Phys., 2002, 116, 7094–7103, https://doi.org/10.1063/1.1463435. DOI: https://doi.org/10.1063/1.1463435
Haghmoradi A., Wang L., Chapman W. G., J. Phys.: Condens. Matter, 2017, 29, 044002, https://doi.org/10.1088/1361-648x/29/4/044002. DOI: https://doi.org/10.1088/1361-648X/29/4/044002
Bryk P., Sokolowski S., Pizio O., J. Chem. Phys., 2006, 125, 024909, https://doi.org/10.1063/1.2212944. DOI: https://doi.org/10.1063/1.2212944
Millan Malo B., Huerta A., Pizio O., Sokolowski S., J. Phys. Chem. B, 2000, 104, 7756–7763,https://doi.org/10.1021/jp000731l. DOI: https://doi.org/10.1021/jp000731l
Dufal S., Lafitte T., Haslam A. J., Galindo A., Clark G. N. I., Vega C., Jackson G., Mol. Phys., 2015, 113, 948–984, https://doi.org/10.1080/00268976.2015.1029027. DOI: https://doi.org/10.1080/00268976.2015.1029027
Pandit R., Schick M., Wortis M., Phys. Rev. B, 1982, 26, 5112–5140, https://doi.org/10.1103/PhysRevB.26.5112. DOI: https://doi.org/10.1103/PhysRevB.26.5112
Hughes A. P., Archer A. J., Thiele U., Amer. J. Phys., 2014, 82, 1119–1129, https://doi.org/10.1119/1.4890823. DOI: https://doi.org/10.1119/1.4890823
Jackson G., Chapman W. G., Gubbins K. E., Mol. Phys., 1988, 65, 1–31, https://doi.org/10.1080/00268978800100821. DOI: https://doi.org/10.1080/00268978800100821
Barker J., Henderson D., J. Chem. Phys., 1967, 47, 4714–4721, https://doi.org/10.1063/1.1701689. DOI: https://doi.org/10.1063/1.1701689
Steele W. A., The Interaction of Gases with Solid Surfaces, Pergamon Press, Oxford, 1974.
Wertheim M. S., J. Stat. Phys., 1984, 35, 19–34, https://doi.org/10.1007/BF01017362. DOI: https://doi.org/10.1007/BF01017362
Wertheim M. S., J. Stat. Phys., 1984, 35, 35–47, https://doi.org/10.1007/BF01017363. DOI: https://doi.org/10.1007/BF01017363
Chapman W. G., Jackson G., Gubbins K. E., Mol. Phys., 1988, 65, 1057–1079, https://doi.org/10.1080/00268978800101601. DOI: https://doi.org/10.1080/00268978800101601
Gil-Villegas A., Galindo A., Whitehead P. J., Mills S. J., Jackson G., Burgess A. N., J. Chem. Phys., 1997, 106, 4168–4186, https://doi.org/10.1063/1.473101. DOI: https://doi.org/10.1063/1.473101
TrejosV. M., Pizio O., Sokolowski S., Fluid Phase Equilib., 2018, 473, 145–153, https://doi.org/10.1016/j.fluid.2018.06.005. DOI: https://doi.org/10.1016/j.fluid.2018.06.005
Pizio O., Sokolowski S., J. Mol. Liq., 2022, 357, 119111, https://doi.org/10.1016/j.molliq.2022.119111. DOI: https://doi.org/10.1016/j.molliq.2022.119111
Pizio O., Sokolowski S., J. Mol. Liq., 2023, 390, 123009, https://doi.org/10.1016/j.molliq.2023.123009. DOI: https://doi.org/10.1016/j.molliq.2023.123009
Yu Y-X., Wu J., J. Chem. Phys., 2002, 117, 10156–10164, https://doi.org/10.1063/1.1520530. DOI: https://doi.org/10.1063/1.1520530
Trejos V. M., Pizio O., Sokolowski S., J. Chem. Phys., 2018, 149, 134701, https://doi.org/10.1063/1.5066552. DOI: https://doi.org/10.1063/1.5066552
Pizio O., Trejos V. M., Sokolowski S., Mol. Phys., 2020, 118, 1615647, https://doi.org/10.1080/00268976.2019.1615647. DOI: https://doi.org/10.1080/00268976.2019.1615647
Bryk P., Bucior K., Sokolowski S., Żukociński G., J. Phys.: Condens. Matter, 2004, 16, 8861–8873, https://doi.org/10.1088/0953-8984/16/49/005. DOI: https://doi.org/10.1088/0953-8984/16/49/005
Dietrich S., In: Phase Transition and Critical Phenomena, Vol. 12, Domb C., Lebowitz J. L. (Eds.), Academic Press, London, 1988, 2–218.
Fox H. W., Zisman W. A., J. Colloid Sci., 1950, 5, 514–531, https://doi.org/10.1016/0095-8522(50)90044-4. DOI: https://doi.org/10.1016/0095-8522(50)90044-4
Jasper W. J., Anand N., J. Mol. Liq., 2019, 281, 196–203, https://doi.org/10.1016/j.molliq.2019.02.039. DOI: https://doi.org/10.1016/j.molliq.2019.02.039
Rapaport D. C., The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge, 2004, https://doi.org/10.1017/CBO9780511816581. DOI: https://doi.org/10.1017/CBO9780511816581
Heyes D. M., CMST, 2015, 21, 169–179, https://doi.org/10.12921/cmst.2015.21.04.001. DOI: https://doi.org/10.12921/cmst.2015.21.04.001
Pizio O., Sokolowski S., Trejos V. M., Condens. Matter Phys., 2021, 24, 33601, https://doi.org/10.5488/CMP.24.33601. DOI: https://doi.org/10.5488/CMP.24.33601
Pi H., Aragones J. L., Vega C., Noya E. G., Abascal J. L. F., Gonzalez M. A., McBride C., Mol. Phys., 2009, 107, 365–374, https://doi.org/10.1080/00268970902784926. DOI: https://doi.org/10.1080/00268970902784926
Fletcher D. A., McMeeking R. F., Parkin D., J. Chem. Inf. Comput. Sci., 1966, 36, 746, https://doi.org/10.1021/ci960015+. DOI: https://doi.org/10.1021/ci960015+
Vargaftik N. B., Volkov B. N., Voljak L. D., J. Phys. Chem. Ref. Data, 1983, 12, 817–820, https://doi.org/10.1063/1.555688. DOI: https://doi.org/10.1063/1.555688
Gloor G. J., Jackson G., Blas F. J., Martin del Rio E., de Miguel E., J. Chem. Phys., 2004, 121, 12740, https://doi.org/10.1063/1.1807833. DOI: https://doi.org/10.1063/1.1807833
Friedman S. R., Khalil M., Taborek P., Phys. Rev. Lett., 2013, 111, 226101, https://doi.org/10.1103/PhysRevLett.111.226101. DOI: https://doi.org/10.1103/PhysRevLett.111.226101
Cheng E., Cole M. W., Saam W. F., Treiner J., Phys. Rev. Lett., 1991, 67, 1007–1011, https://doi.org/10.1103/PhysRevLett.67.1007. DOI: https://doi.org/10.1103/PhysRevLett.67.1007
Notman R., Walsh T. R., Langmuir, 2009, 25, 1638–1644, https://doi.org/10.1021/la803324x. DOI: https://doi.org/10.1021/la803324x
De Leeuw N. H., Higgins F. M., Parker S. C., J. Phys. Chem. B, 1999, 103, 1270–1277. https://doi.org/10.1021/jp983239z. DOI: https://doi.org/10.1021/jp983239z
Gaigeot M.-P., Sprik M., Sulpizi M., J. Phys.: Condens. Matter, 2012, 24, 124106, https://doi.org/10.1088/0953-8984/24/12/124106. DOI: https://doi.org/10.1088/0953-8984/24/12/124106
Zhao X., Phys. Rev. B, 2007, 76, 041402(R), https://doi.org/10.1103/PhysRevB.76.041402. DOI: https://doi.org/10.1103/PhysRevB.76.041402
Sokolowski S., Fischer J., J. Chem. Phys., 1992, 96, 5441–5447, https://doi.org/10.1063/1.462727. DOI: https://doi.org/10.1063/1.462727
Sokolowski S., Kalyuzhnyi Y. V., J. Phys. Chem. B, 2014, 118, 9076–9084, https://doi.org/10.1021/jp503826p. DOI: https://doi.org/10.1021/jp503826p
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 A. Kozina, M. Aguilar, O. Pizio, S. Sokołowski
This work is licensed under a Creative Commons Attribution 4.0 International License.