50 years of Yukhnovskii’s critical point theory: its place in the constant flow of theoretical physics

Authors

DOI:

https://doi.org/10.5488/cmp.28.43501

Keywords:

collective variables, renormalization group, Brillouin zone, hierarchical lattice, Dyson’s hierarchical model

Abstract

Half a century ago, Ihor Yukhnovskii elaborated a method of studying the critical point of the three-dimensional Ising model based on a layer-by-layer integration in the space of collective variables. His method was an alternative to that based on the ε-expansion for which K. G. Wilson was awarded the Nobel Prize in Physics in 1982. However, Yukhnovskii’s technique, which yielded similar results, provided even deeper insight into the nature of this phenomenon. At that time, we, professor’s students, saw only this aspect of his theory. Later, I realized that the mentioned Yukhnovskii’s work naturally fits into a more general context of the turbulent development of quantum field theory and statistical physics in the last quarter of the twentieth century. The aim of the present article is to look at the main aspects and the impact of Yukhnovskii’s theory from this perspective.

 

References

Kadanoff L. P., Phys. Phys. Fiz., 1966, 2, 263–272.

Wilson K. G., Fisher M. E., Phys. Rev. Lett., 1972, 28, 240–243.

Wilson K. G., Kogut J., Phys. Rep., 1974, 12, 75–199.

Yukhnovskii I. R., Riv. Nuovo Cimento, 1989, 12, 1–119.

Yukhnovskii I. R., Kozlovskii M. P., Pylyuk I. V., Phys. Rev. B, 2002, 66, 134410.

Yukhnovskii I. R., Rudavskii Yu. K., Preprint Inst. Theor. Phys. Acad. Sci. Ukr. SSR, ITP-74-171R, 1974.

Yukhnovskii I. R., Rudavskii Yu. K., Preprint Inst. Theor. Phys. Acad. Sci. Ukr. SSR, ITP-75-13R, 1975.

Yukhnovskii I. R., Rudavskii Yu. K., Sov. Phys. Dokl., 1977, 22, 200.

Guerra F., Rosen L., Simon B., Ann. Math., 1975, 101, 111–189.

Georgii H.-O., Gibbs Measures and Phase Transitions, Vol. 9. Walter de Gruyter, 2011.

Simon B., The Statistical Mechanics of Lattice Gases. I, Princeton University Press, Princeton, New Jersey, 1993.

Lebowitz J. L., Presutti E., Commun. Math. Phys., 1976, 50, 195–218.

Kozitsky Yu., Rep. Math. Phys., 1988, 26, 429–445.

Kozitsky Yu. V., Yukhnovskii I. R., Theor. Math. Phys., 1982, 51, 490–497.

Kraichnan R. H., J. Math. Phys., 1961, 2, 124–148.

Andelman D., Berker N. A., J. Phys. A: Math. Gen., 1981, 4, L91–L96.

Berker A. N., Ostlund S., Putnam F. A., Phys. Rev. B, 1978, 17, 3650–3665.

Berker N. A., Oslund S., J. Phys. C: Solid State Phys., 1979, 12, 4961–75.

Bleher P. M., Žalys E., Commun. Math. Phys., 1979, 67, 17–42.

Bleher P. M., Žalys E., Lith. Math. J., 1988, 28, 127–139.

Griffiths R. B., Kaufman M., Phys. Rev. B, 1982, 26, 5022.

Hinczewski M., Berker N. A., Phys. Rev. E, 2006, 73, 066126.

Kotorowicz M., Kozitsky Yu., Condens. Matter Phys., 2011, 14, 13801.

Kotorowicz M., Kozitsky Yu., J. Phys. A: Math. Theor., 2022, 55, 405002.

Li M., Lu D., ScienceAsia, 2023, 49, No. 3, 386.

Dyson F. J., Commun. Math. Phys., 1969, 12, 91–107.

Published

2025-12-22

Issue

Section

Сollection of the articles dedicated to the 100th anniversary of Prof. Ihor Yukhnovskii

Categories

How to Cite

[1]
Y. Kozitsky, “50 years of Yukhnovskii’s critical point theory: its place in the constant flow of theoretical physics”, Condens. Matter Phys., vol. 28, no. 4, p. 43501, Dec. 2025, doi: 10.5488/cmp.28.43501.

Similar Articles

21-30 of 84

You may also start an advanced similarity search for this article.