When correlations exceed system size: finite-size scaling in free boundary conditions above the upper critical dimension
DOI:
https://doi.org/10.5488/cmp.27.13603Keywords:
universality, finite-size scaling, upper critical dimensionAbstract
We progress finite-size scaling in systems with free boundary conditions above their upper critical dimension, where in the thermodynamic limit critical scaling is described by mean-field theory. Recent works show that the correlation length is not bound by the system's physical size, a belief that long held sway. Instead, two scaling regimes can be observed — at the critical and pseudo-critical temperatures. We demonstrate that both are manifest for free boundaries. We use numerical simulations of the d = 5 Ising model to analyse the magnetization, susceptibility, magnetization Fourier modes and the partition function zeros. While some of the response functions hide the dual finite-size scaling, the precision enabled by the analysis of Lee–Yang zeros allows this be brought to the fore. In particular, finite-size scaling of leading zeros at the pseudo-critical point confirms recent predictions coming from correlations exceeding the system size. This paper is dedicated to Jaroslav Ilnytskyi on the occasion of his 60th birthday.
References
Berche B., Kenna R., Walter J. C., Nucl. Phys. B, 2012, 865, 115, https://doi.org/10.1016/j.nuclphysb.2012.07.021. DOI: https://doi.org/10.1016/j.nuclphysb.2012.07.021
Lundow P. H., Markström K., Nucl. Phys. B, 2014, 889, 249, https://doi.org/10.1016/j.nuclphysb.2014.10.011. DOI: https://doi.org/10.1016/j.nuclphysb.2014.10.011
Flores-Sola E., Berche B., Kenna R., Weigel M., Phys. Rev. Lett., 2016, 116, 115701, https://doi.org/10.1103/PhysRevLett.116.115701. DOI: https://doi.org/10.1103/PhysRevLett.116.115701
Kenna R., Berche B., Condens. Matter Phys., 2013, 16, 23601, https://doi.org/10.5488/CMP.16.23601. DOI: https://doi.org/10.5488/CMP.16.23601
Kenna R., Berche B., J. Phys. A: Math. Theor., 2017, 50, 235001, https://doi.org/10.1088/1751-8121/aa6bd5. DOI: https://doi.org/10.1088/1751-8121/aa6bd5
Berche B., Chatelain C., Dhall C., Kenna R., Low R., Walter J. C., J. Stat. Mech.: Theory Exp., 2008, 2008, P11010, https://doi.org/10.1088/1742-5468/2008/11/P11010. DOI: https://doi.org/10.1088/1742-5468/2008/11/P11010
Ellis T., Kenna R., Berche B., Condens. Matter Phys., 2023, 26, No. 3, 33606 https://doi.org/10.5488/CMP.26.33606. DOI: https://doi.org/10.5488/CMP.26.33606
Berche B., Ellis T., Holovatch Yu., Kenna R., SciPost Phys. Lect. Notes, 2022, 60, https://doi.org/10.21468/SciPostPhysLectNotes.60. DOI: https://doi.org/10.21468/SciPostPhysLectNotes.60
Ivaneyko D., Berche B., Holovatch Yu., Ilnytskyi J., Physica A, 2008, 387, 4497–4512, https://doi.org/10.1016/j.physa.2008.03.034. DOI: https://doi.org/10.1016/j.physa.2008.03.034
Ilnytskyi J. M., Holovatch Yu., Condens. Matter Phys., 2007, 10, 539–552, https://doi.org/10.5488/CMP.10.4.539. DOI: https://doi.org/10.5488/CMP.10.4.539
Ivaneyko D., Ilnytskyi J., Berche B., Holovatch Yu., Physica A, 2006, 370, 163–178, https://doi.org/10.1016/j.physa.2006.03.010. DOI: https://doi.org/10.1016/j.physa.2006.03.010
Chaikin P. M., Lubensky T. C., Principles of Condensed Matter Physics, Cambridge University Press, 2000.
Berche B., Henkel M., Kenna R., J. Phys. Stud., 2009, 13, 3201, https://doi.org/10.30970/jps.13.3001. DOI: https://doi.org/10.30970/jps.13.3001
Janke W., Kenna R., Phys. Rev. B, 2002, 65, 064110, https://doi.org/10.1103/PhysRevB.65.064110. DOI: https://doi.org/10.1103/PhysRevB.65.064110
Privman V., Fisher M. E., J. Stat. Phys., 1983, 33, 385, https://doi.org/10.1007/BF01009803. DOI: https://doi.org/10.1007/BF01009803
Brézin E., Zinn-Justin J., Nucl. Phys. B, 1985, 257, 867, https://doi.org/10.1016/0550-3213(85)90379-7. DOI: https://doi.org/10.1016/0550-3213(85)90379-7
Jones J. L., Young A. P., Phys. Rev. B, 2005, 71, 174438, https://doi.org/10.1103/PhysRevB.71.174438. DOI: https://doi.org/10.1103/PhysRevB.71.174438
Flores-Sola E. J., Berche B., Kenna R., Weigel M., Eur. Phys. J. B, 2015, 88, 28, https://doi.org/10.1140/epjb/e2014-50683-1. DOI: https://doi.org/10.1140/epjb/e2014-50683-1
Kenna R., Berche B., Eur. Phys. Lett., 2014, 105, 26005, https://doi.org/10.1209/0295-5075/105/26005. DOI: https://doi.org/10.1209/0295-5075/105/26005
Binder K., Nauenberg M., Privman V., Young A. P., Phys. Rev. B, 1985, 31, 1498, https://doi.org/10.1103/PhysRevB.31.1498. DOI: https://doi.org/10.1103/PhysRevB.31.1498
Kenna R., Berche B., In: Order, Disorder, and Criticality: Advanced Problems of Phase Transition Theory, Holovatch Yu. (Ed.), Vol. 4, World Scientific, Singapore, 2015, 1–54. DOI: https://doi.org/10.1142/9789814632683_0001
Yang C. N., Lee T. D., Phys. Rev., 1952, 87, 404, https://doi.org/10.1103/PhysRev.87.404. DOI: https://doi.org/10.1103/PhysRev.87.404
Lee T. D., Yang C. N., Phys. Rev., 1952, 87, 410, https://doi.org/10.1103/PhysRev.87.410. DOI: https://doi.org/10.1103/PhysRev.87.410
Fisher M. E., In: Lectures in Theoretical Physics, Vol. 7C, Britten W. E. (Ed.), University of Colorado Press, Boulder, Colorado, USA, 1965, 1–159.
Wu F. Y., Int. J. Mod. Phys. B, 2008, 22, 1899, https://doi.org/10.1142/S0217979208039198. DOI: https://doi.org/10.1142/S0217979208039198
Lundow P. H., Markström K., Nucl. Phys. B, 2011, 845, 120–139, https://doi.org/10.1016/j.nuclphysb.2010.12.002. DOI: https://doi.org/10.1016/j.nuclphysb.2010.12.002
Lundow P. H., Nucl. Phys. B, 2021, 967, 115422, https://doi.org/10.1016/j.nuclphysb.2021.115422. DOI: https://doi.org/10.1016/j.nuclphysb.2021.115422
Wolff U., Phys. Rev. Lett, 1989, 62, 361, https://doi.org/10.1103/PhysRevLett.62.361. DOI: https://doi.org/10.1103/PhysRevLett.62.361
Kasteleyn P. W., Fortuin C. M., J. Phys. Soc. Jpn. Suppl., 1969, 26, 11.
Fortuin C. M., Kasteleyn P. W., Physica, 1972, 57, 536, https://doi.org/10.1016/0031-8914(72)90045-6. DOI: https://doi.org/10.1016/0031-8914(72)90045-6
Ferrenberg A. M., Swendsen R. H., Phys. Rev. Lett., 1988, 61, 2635, https://doi.org/10.1103/PhysRevLett.61.2635. DOI: https://doi.org/10.1103/PhysRevLett.61.2635
Ferrenberg A. M., Swendsen R. H., Phys. Rev. Lett., 1989, 63, 1195, https://doi.org/10.1103/PhysRevLett.63.1195. DOI: https://doi.org/10.1103/PhysRevLett.63.1195
Rudnick J., Gaspari G., Privman V., Phys. Rev. B, 1985, 32, 7594, https://doi.org/10.1103/PhysRevB.32.7594. DOI: https://doi.org/10.1103/PhysRevB.32.7594
Bena I., Droz M., Lipowski A., Int. J. Mod. Phys. B, 2005, 19, 4269, https://doi.org/10.1142/S0217979205032759. DOI: https://doi.org/10.1142/S0217979205032759
Krasnytska M., Berche B., Holovatch Yu., Kenna R., J. Phys. A: Math. Theor., 2016, 49, 135001, https://doi.org/10.1088/1751-8113/49/13/135001. DOI: https://doi.org/10.1088/1751-8113/49/13/135001
Krasnytska M., Berche B., Holovatch Yu., Kenna R., Europhys. Lett., 2015, 111, 60009, https://doi.org/10.1209/0295-5075/111/60009. DOI: https://doi.org/10.1209/0295-5075/111/60009
Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., Numerical Recipes: The Art of Scientific Computing, 3rd Edition, Cambridge University Press, 2007.
Itzykson C., Pearson R. B., Zuber J. B., Nucl. Phys. B, 1983, 220, 415, https://doi.org/10.1016/0550-3213(83)90499-6. DOI: https://doi.org/10.1016/0550-3213(83)90499-6
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 Yu. Honchar, B. Berche, Yu. Holovatch, R. Kenna
This work is licensed under a Creative Commons Attribution 4.0 International License.