Consensus decision making on a complete graph: complex behaviour from simple assumptions

Authors

  • P. Sarkanych Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, Lviv, 79011, Ukraine; L4 Collaboration and Doctoral College for the Statistical Physics of Complex Systems, Lviv-Leipzig-Lorraine-Coventry, Europe https://orcid.org/0000-0001-6916-5004
  • Yu. Sevinchan Department of Biology, Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, 10099, Germany; Research Cluster of Excellence ‘Science of Intelligence’, Berlin, 10587, Germany https://orcid.org/0000-0003-3858-0904
  • M. Krasnytska Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, Lviv, 79011, Ukraine; L4 Collaboration and Doctoral College for the Statistical Physics of Complex Systems, Lviv-Leipzig-Lorraine-Coventry, Europe; Haiqu, Inc., Shevchenka Str., 120 G, Lviv, 79039, Ukraine https://orcid.org/0000-0002-0464-5741
  • P. Romanczuk Department of Biology, Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, 10099, Germany; Research Cluster of Excellence ‘Science of Intelligence’, Berlin, 10587, Germany https://orcid.org/0000-0002-4733-998X
  • Yu. Holovatch Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, Lviv, 79011, Ukraine; L4 Collaboration and Doctoral College for the Statistical Physics of Complex Systems, Lviv-Leipzig-Lorraine-Coventry, Europe; Centre for Fluid and Complex Systems, Coventry University, Coventry CV1 5FB, UK; Complexity Science Hub Vienna, 1080 Vienna, Austria https://orcid.org/0000-0002-1125-2532

DOI:

https://doi.org/10.5488/cmp.27.33801

Keywords:

collective decision making, spin models, bias, conformity

Abstract

In this paper we investigate a model of consensus decision making [Hartnett A. T., et al., Phys. Rev. Lett., 2016, 116, 038701] following a statistical physics approach presented in [Sarkanych P., et al., Phys. Biol., 2023, 20, 045005]. Within this approach, the temperature serves as a measure of fluctuations, not considered before in the original model. Here, we discuss the model on a complete graph. The main goal of this paper is to show that an analytical description may lead to a very rich phase behaviour, which is usually not expected for a complete graph. However, the variety of individual agent (spin) features - their inhomogeneity and bias strength - taken into account by the model leads to rather non-trivial collective effects. We show that the latter may emerge in a form of continuous or abrupt phase transitions sometimes accompanied by re-entrant and order-parameter flipping behaviour. In turn, this may lead to appealing interpretations in terms of social decision making. We support analytical predictions by numerical simulation. Moreover, while analytical calculations are performed within an equilibrium statistical physics formalism, the numerical simulations add yet another dynamical feature - local non-linearity or conformity of the individual to the opinion of its surroundings. This feature appears to have a strong impact both on the way in which an equilibrium state is approached as well as on its characteristics.

References

Bonabeau E., Theraulaz G., Deneubourg J.-L., Aron S., Camazine S., Trends Ecol. Evol., 1997, 12, No. 5, 188–193. DOI: https://doi.org/10.1016/S0169-5347(97)01048-3

Buhl J., Sumpter D. J., Couzin I. D., Hale J. J., Despland E., Miller E. R., Simpson S. J., Science, 2006, 312, No. 5778, 1402–1406. DOI: https://doi.org/10.1126/science.1125142

Faria J. J., Krause S., Krause J., Behav. Ecol., 2010, 21, No. 6, 1236–1242. DOI: https://doi.org/10.1093/beheco/arq141

Krause J., Ruxton G. D., Living in Groups, Oxford University Press, Oxford, 2002. DOI: https://doi.org/10.1093/oso/9780198508175.001.0001

Sumpter D. J., Collective animal behavior, Princeton University Press, 2010. DOI: https://doi.org/10.1515/9781400837106

Couzin I. D., Krause J., Franks N. R., Levin S. A., Nature, 2005, 433, No. 7025, 513–516. DOI: https://doi.org/10.1038/nature03236

Couzin I. D., Ioannou C. C., Demirel G., Gross T., Torney C. J., Hartnett A., Conradt L., Levin S. A., Leonard N. E., Science, 2011, 334, No. 6062, 1578–1580. DOI: https://doi.org/10.1126/science.1210280

Winklmayr C., Kao A. B., Bak-Coleman J. B., Romanczuk P., Proc. R. Soc. B, 2020, 287, No. 1938, 20201802. DOI: https://doi.org/10.1098/rspb.2020.1802

Winklmayr C., Kao A. B., Bak-Coleman J. B., Romanczuk P., Collect. Intell., 2023, 2, No. 1, 26339137221148675. DOI: https://doi.org/10.1177/26339137221148675

Romanczuk P., Daniels B. C., In: Order, Disorder and Criticality: Advanced Problems of Phase Transition Theory, Vol. 7, Holovatch Yu. (Ed.), World Scientific, Singapore, 2023, 179–208. DOI: https://doi.org/10.1142/9789811260438_0004

Castellano C., Fortunato S., Loreto V., Rev. Mod. Phys., 2009, 81, No. 2, 591. DOI: https://doi.org/10.1103/RevModPhys.81.591

Pinkoviezky I., Couzin I. D., Gov N. S., Phys. Rev. E, 2018, 97, No. 3, 032304. DOI: https://doi.org/10.1103/PhysRevE.97.032304

Hartnett A. T., Schertzer E., Levin S. A., Couzin I. D., Phys. Rev. Lett., 2016, 116, 038701. DOI: https://doi.org/10.1103/PhysRevLett.116.038701

Sarkanych P., Krasnytska M., Gómez-Nava L., Romanczuk P., Holovatch Yu., Phys. Biol., 2023, 20, No. 4, 045005. DOI: https://doi.org/10.1088/1478-3975/acd6ce

Klayman J., Psychology of Learning and Motivation, 1995, 32, 385–418. DOI: https://doi.org/10.1016/S0079-7421(08)60315-1

Nickerson R. S., Rev. Gen. Psychol., 1998, 2, No. 2, 175–220. DOI: https://doi.org/10.1037//1089-2680.2.2.175

Clifford P., Sudbury A., Biometrika, 1973, 60, No. 3, 581–588. DOI: https://doi.org/10.1093/biomet/60.3.581

Redner S., C. R. Phys., 2019, 20, No. 4, 275–292. DOI: https://doi.org/10.1016/j.crhy.2019.05.004

Krapivsky P. L., Redner S., Phys. Rev. Lett., 2003, 90, 238701. DOI: https://doi.org/10.1103/PhysRevLett.90.238701

Riedel L., Herdeanu B., Mack H., Sevinchan Y., Weninger J., J. Open Source Softw., 2020, 5, 2165. DOI: https://doi.org/10.21105/joss.02165

Sevinchan Y., Herdeanu B., Traub J., J. Open Source Softw., 2020, 5, 2316. DOI: https://doi.org/10.21105/joss.02316

Sevinchan Y., Herdeanu B., Mack H., Riedel L., Roth K., In: Computational Science – ICCS 2020, Lecture Notes in Computer Science, Vol. 12143, Krzhizhanovskaya V. V., Závodszky G., Lees M. H., Dongarra J. J., Sloot P. M. A., Brissos S., Teixeira J. (Eds.), Springer International Publishing, Cham, Switzerland, 442–456.

Sevinchan Y., SocialSpinModel C++ implementation in Utopia, git repository, https://gitlab.com/utopia-project/models/SocialSpinModels, 2024.

Kenna R., Mac Carron P., EPL, 2012, 99, No. 2, 28002. DOI: https://doi.org/10.1209/0295-5075/99/28002

Kenna R., Mac Carron M., Mac Carron P. (Eds.), Maths Meets Myths: Quantitative Approaches to Ancient Narratives, Understanding Complex Systems, Springer International Publishing Switzerland, 2017. DOI: https://doi.org/10.1007/978-3-319-39445-9

Sarkanych P., Fedorak N., Holovatch Yu., Mac Carron P., Yose J., Kenna R., Adv. Complex Syst., 2022, 25, No.5&6, 2240007. DOI: https://doi.org/10.1142/S0219525922400070

L4 International Collaboration on Statistical Physics of Complex Systems, https://sites.google.com/view/l4doctoralcollege/home, accessed: 2024-02-02.

Published

2024-09-24

How to Cite

[1]
P. Sarkanych, Y. Sevinchan, M. Krasnytska, P. Romanczuk, and Y. Holovatch, “Consensus decision making on a complete graph: complex behaviour from simple assumptions”, Condens. Matter Phys., vol. 27, no. 3, p. 33801, Sep. 2024, doi: 10.5488/cmp.27.33801.

Similar Articles

11-20 of 29

You may also start an advanced similarity search for this article.