The influence of dimensional crossover on phase transitions and critical phenomena in condensed systems

Authors

DOI:

https://doi.org/10.5488/cmp.28.33501

Keywords:

dimensional crossover, critical exponents, bounded (confined) liquids, lower crossover dimensionality, fractal dimension, diffusion coefficient

Abstract

This article is aimed at studying the effects of the dimensional crossover (DC) on physical properties of condensed systems near phase transition and critical points. Here we consider the following problems: (1) the theoretical provisions that allow to study the effect of spatial confinement on DC near phase transition and critical points; (2) the study of DC in condensed systems with the Ginzburg number Gi < 1, where fluctuation effects are described in different ways at the fluctuation, regular and intermediate (crossover) regions; (3) two types of DC were investigated: (a) a decrease in the linear dimensions L to the values of the correlation length of the order parameter fluctuations leads to the conversion of the dependence on thermodynamic variable into a dependence on linear sizes of 3D systems, as well as (b) a further decrease in linear sizes L the 3D–2D or 3D1D DC happens depending on slitlike or cylindrical geometry, which is determined by the value of the lower crossover dimensionality dLCD; (4) it is proposed to extend the known equalities for critical exponents by using the Mandelbrot formula for fractal dimension Df as a critical exponent; (5) the influence of 3D–2D DC on the characteristics of the fine structure of the molecular light scattering (MLS) spectrum is studied.  

References

Yukhnovskii I. R., Phase Transitions of the Second Order: Collective Variables Method, World Scientific, Singapore, 1987. DOI: https://doi.org/10.1142/0289

Yukhnovskii I. R., Holovko M. F., Statistical Theory of Classical Equilibrium Systems, Naukova Dumka, Kyiv, 1980, (in Russian).

Yukhnovskii I. R., Kozlovskii M. P., Pylyuk I. V., Microscopic Theory of Phase Transitions in the Three Dimensional Systems, Eurosvit, Lviv, 2001, (in Ukrainian).

Holovatch Yu. V. (Ed.), Order, Disorder and Criticality. Vol. 6. Advanced Problems of Phase Transitions Theory, World Scientific, 2020. DOI: https://doi.org/10.1142/11711

Lev B., Zagorodny A., Applications of Field Theory Methods in Statistical Physics of Nonequilibrium Systems, World Scientific, 2021. DOI: https://doi.org/10.1142/12091

Fisher M. E., In: Proceedings of the International School of Physics “Enrico Fermi”, Green M. S. (Ed.), Academic, New York, 1971.

Binder K., Annu. Rev. Phys. Chem., 1992, 43, 33–59. DOI: https://doi.org/10.1146/annurev.pc.43.100192.000341

Gelb L. D., Gubbins K. E., Radhakrishnan R., Sliwinska-Bartkowiak M., Rep. Prog. Phys., 1999, 62, 1573–1659. DOI: https://doi.org/10.1088/0034-4885/62/12/201

Kimball M. O., Mooney K. P., Gasparini F. M., Phys. Rev. Lett., 2004, 92, 115302. DOI: https://doi.org/10.1103/PhysRevLett.92.115301

Bulavin L. A., Chalyy K. O., Neutron Optics of Mesoscale Liquids, Naukova Dumka, Kyiv, 2006, (in Ukrainian).

Brovchenko I., Oleinikova A., Interfacial and Confined Water, Elsevier Science, 2008.

Chalyi A. V., In: Physics of Liquid Matter: Modern Problems, Bulavin L., Lebovka N. (Eds.), Springer International Publishing, Switzerland, 2015, 31–49.

Chalyi A. V., Bulavin L. A., Chekhun V. F., Chalyy K. A., Chernenko L. M., Vasilev A. N., Zaitseva E. V., Khrapijchuk G. V., Severin A. V., Kovalenko M. V., Condens. Matter Phys., 2013, 16, 23008. DOI: https://doi.org/10.5488/CMP.16.23008

Chalyi A. V., J. Mol. Liq., 2019, 288, 110873. DOI: https://doi.org/10.1016/j.molliq.2019.04.150

Chalyi A. V., In: Modern Problems of Molecular Physics, Bulavin L., Chalyi A. (Eds.), Springer International Publishing, Switzerland, 2018, 253–289. DOI: https://doi.org/10.1007/978-3-319-61109-9_12

Patashinskii A. Z., Pokrovskii V. L., The Fluctuation Theory of Phase Transitions, Pergamon Press, Oxford, 1979.

Anisimov M. A., Critical Phenomena in Liquids and Liquid Crystals, Gordon & Breach, Philadelphia, 1991.

Kadanoff L. P., Phys. Phys. Fiz., 1966, 2, 263–273.

Stanley H. E., Introduction to Phase Transitions and Critical Phenomena, Clarendon Press, Oxford, 1971.

Wilson K. G., Fisher M. E., Phys. Rev. Lett., 1972, 28, 240. DOI: https://doi.org/10.1002/phbl.19720280513

Chalyi A. V., What is Medicine? Basic Principles of Physics in Medicine and Beyond, Springer Nature, Switzerland, 2025. DOI: https://doi.org/10.1007/978-3-031-64979-0

Chalyi A. V., Lebed A. G., Non-Homogeneous Liquids Near the Critical Point and the Boundary of Stability and Theory of Percolation in Ceramics, Harwood Academic Publishers, UK, London, 1993.

Lakoza E. L., Sysoev V. M., Chalyi A. V., Zh. Eksp. Teor. Fiz., 1973, 65, 605–616.

Fisher M. E., de Gennes P. G., C. R. Acad. Sci. Paris. Ser. B, 1978, 287, 207–209.

Chalyi A. V., J. Mol. Liq., 1993, 58, 179–195. DOI: https://doi.org/10.1016/0167-7322(93)80066-5

Bulavin L. A., Chalyi A. V., Chalyy K. A., Chernenko L. M., Grechko L. G., Preprint of the Bogolyubov Institute for Theoretical Physics, ITP-93-158, Kyiv, 1993.

Chalyy K. A., Hamano K., Chalyi A. V., J. Mol. Liq., 2001, 92, 153–164. DOI: https://doi.org/10.1016/S0167-7322(01)00188-X

Boiko V. G., Moegel Kh. J., Sysoev V. M., Chalyi A. V., Sov. Phys. Usp., 1991, 34, 141. DOI: https://doi.org/10.1070/PU1991v034n02ABEH002341

Ehrenfest P., Collected Scientific Papers, Klein M. J. (Ed.), North-Holland Publishers, Amsterdam, 1959.

Onuki A., J. Chem. Phys., 1986, 85, 1122. DOI: https://doi.org/10.1063/1.451308

Chalyi O. V., Khrapiichuk G. V., Chernenko L. M., Chalyi K. O., Zaitseva O. V., Ukr. J. Phys., 2010, 55, 1111–1122.

Levanyuk A. P., Zh. Eksp. Teor. Fiz., 1959, 36, 571–576.

Ginzburg V. L., Sov. Phys. Solid State, 1960, 2, 1824–1834. DOI: https://doi.org/10.1070/PU1960v002n06ABEH003185

Sysoev V. M., Chalyi A. V., Theor. Math. Phys., 1976, 20, 126.

Fuentevilla D. A., Anisimov M. A., Phys. Rev. Lett., 2006, 97, 195702. DOI: https://doi.org/10.1103/PhysRevLett.97.195702

Bertrand C. E., Anisimov M. A., J. Phys. Chem. B, 2011, 115, 14099–14111. DOI: https://doi.org/10.1021/jp204011z

Holten V., Bertrand C. E., Anisimov M. A., Sengers J. V., J. Chem. Phys., 2012, 136, 094507. DOI: https://doi.org/10.1063/1.3690497

Chalyi A. V., Bulavin L. A., Chalyy K. O., In: Proceedings of the Bogolyubov Kyiv Conference “Modern Problems of Theoretical and Mathematical Physics” (Kyiv, 2024), Zagorodny A. G. (Ed.), Collections Scientific Works, Kyiv, 2024, 17–18.

Mandelbrot B. B., Fractals, Form, Chance and Dimension, Freaman and Company, New York, 1971.

Mandelbrot B. B., The Fractal Geometry of Nature, Freaman and Company, New York, 1982.

Smirnov B. M., Sov. Phys. Usp., 1986, 29, 481. DOI: https://doi.org/10.1070/PU1986v029n06ABEH003414

Losa G. A., Merlini D., Nonnenmacher T. F., Weibel E. R.(Eds.), Fractals in Biology and Medicine. Mathematics and Biosciences in Interaction, Birkhäuser Basel, 2005. DOI: https://doi.org/10.1007/3-7643-7412-8

Chalyi A. V., Fractal Fract., 2022, 6, 739. DOI: https://doi.org/10.3390/fractalfract6120739

Published

2025-09-23

Issue

Section

Сollection of the articles dedicated to the 100th anniversary of Prof. Ihor Yukhnovskii

Categories

How to Cite

[1]
O. V. Chalyi and E. V. Zaitseva, “The influence of dimensional crossover on phase transitions and critical phenomena in condensed systems”, Condens. Matter Phys., vol. 28, no. 3, p. 33501, Sep. 2025, doi: 10.5488/cmp.28.33501.

Similar Articles

11-20 of 71

You may also start an advanced similarity search for this article.