Investigation of density of states and charge carrier mobility in amorphous semiconductors via time-of-flight photocurrent analysis

Authors

DOI:

https://doi.org/10.5488/cmp.28.43801

Keywords:

amorphous selenium (a-Se), time-of-flight (ToF), transient photocurrent (TPC), Laplace transform analysis, multiple trapping model (MTM), density of states (DOS)

Abstract

The present study examines the electronic transport characteristics of amorphous semiconductors through ToF measurements and numerical simulations. The primary objective is to determine the DOS in amorphous selenium (a-Se) and to assess the temperature and electric field dependence of the hole mobility. A comprehensive investigation of localized states within the mobility gap is performed using Laplace transform analysis of ToF photocurrent transients, combined with the multiple trapping model. This approach enables accurate reconstruction of the DOS across a wide temperature range, allowing clear identification of shallow and deep trap levels and revealing thermally activated transport mechanisms. Simulated ToF currents are also used to evaluate the hole drift mobility under various thermal and field conditions. Activation energies are extracted from Arrhenius plots of the mobility data. The results support a physically consistent description of the electronic structure in a-Se and validate the applicability of Laplace-based techniques for probing charge transport in disordered semiconductors.

References

Spear W. E., Proc. Phys. Soc., 1960, 76, 826. DOI: https://doi.org/10.1088/0370-1328/76/6/302

Schmidlin F. W., Phys. Rev. B, 1977, 16, 2362. DOI: https://doi.org/10.1103/PhysRevB.16.2362

Noolandi J., Phys. Rev. B, 1977, 16, 4466. DOI: https://doi.org/10.1103/PhysRevB.16.4466

Schmidlin F. W., Philos. Mag. B, 1980, 41, 535. DOI: https://doi.org/10.1080/13642818008245405

Kastner M. A., Solid State Commun., 1983, 45, 191. DOI: https://doi.org/10.1016/0038-1098(83)90374-5

Serdouk F., Benkhedir M. L., Physica B, 2015, 459, 122. DOI: https://doi.org/10.1016/j.physb.2014.12.002

Serdouk F., Boumali A., Makhlouf A., Benkhedir M. L., Rev. Mex. Fis., 2020, 66, 643–655. DOI: https://doi.org/10.31349/RevMexFis.66.643

Serdouk F., Boumali A., Sibatov R. T., Fractal Fract., 2023, 7, 243. DOI: https://doi.org/10.3390/fractalfract7030243

Goutal Y., Serdouk F., Boumali A., Benkhedir M. L., Theor. Math. Phys., 2024, 219, 839–855. DOI: https://doi.org/10.1134/S0040577924050118

Ohno A., Hanna J., Dunlap D. H., Jpn. J. Appl. Phys., 2008, 47, 1079. DOI: https://doi.org/10.1143/JJAP.47.1079

Naito H., Ding J., Okuda M., Appl. Phys. Lett., 1994, 64, 1830. DOI: https://doi.org/10.1063/1.111769

Naito H., Nagase T., Ishii T., Okuda M., Kawaguchi T., Maruno S., J. Non-Cryst. Solids, 1996, 363, 198–200. DOI: https://doi.org/10.1016/0022-3093(95)00725-3

Ogawa N., Nagase T., Naito H., J. Non-Cryst. Solids, 2000, 367, 266–269. DOI: https://doi.org/10.1016/S0022-3093(99)00732-2

Nagase T., Naito H., J. Non-Cryst. Solids, 1998, 824, 227–230. DOI: https://doi.org/10.1016/S0022-3093(98)00163-X

Benkhedir M. L., Aida M. S., Adriaenssens G. J., J. Non-Cryst. Solids, 2004, 344, 193. DOI: https://doi.org/10.1016/j.jnoncrysol.2004.08.062

Benkhedir M. L., Brinza M., Adriaenssens G. J., J. Phys.: Condens. Matter, 2004, 16, No. 44, S5253. DOI: https://doi.org/10.1088/0953-8984/16/44/022

Qamhieh N., Benkhedir M. L., Brinza M., Willekens J., Adriaenssens G. J., J. Phys.: Condens. Matter, 2004.

Benkhedir M. L., Brinza M., Adriaenssens G. J., Main C., J. Phys.: Condens. Matter, 2008, 20, 215202. DOI: https://doi.org/10.1088/0953-8984/20/21/215202

Benkhedir M. L., Djefaflia F., Mansour M., Qamhieh N., Phys. Status Solidi C, 2010, 7, No. 3–4, 877–880. DOI: https://doi.org/10.1002/pssc.200982846

Koughia K., Shakoor Z., Kasap S. O., Marshall J. M., J. Appl. Phys., 2005, 97, No. 3, 033706. DOI: https://doi.org/10.1063/1.1835560

Kasap S., Koughia C., Berashevich J., Johanson R., Reznik A., J. Mater. Sci.: Mater. Electron., 2015, 26, 4644–4658. DOI: https://doi.org/10.1007/s10854-015-3069-1

Benkhedir M. L., Defect Levels in the Amorphous Selenium Band Gap, Ph.d. thesis, Katholieke Universiteit Leuven, Belgium, 2006.

Emelianova E. V., Benkhedir M. L., Brinza M., Adriaenssens G. J., J. Appl. Phys., 2006, 99, No. 8, 083702. DOI: https://doi.org/10.1063/1.2187395

van Rossum G., Drake F. L., Python 3 Reference Manual, CreateSpace, Scotts Valley, CA, 2009.

Gill W. D., J. Appl. Phys., 1972, 43, 5033. DOI: https://doi.org/10.1063/1.1661065

Marshall J. M., Owen A. E., Phys. Status Solidi A, 1972, 12, 181. DOI: https://doi.org/10.1002/pssa.2210120119

Kasap S. O., Juhasz C., J. Phys. D: Appl. Phys., 1985, 18, 703. DOI: https://doi.org/10.1088/0022-3727/18/4/015

Fogal B., Kasap S., Can. J. Phys., 2014, 92, No. 7, 634–639. DOI: https://doi.org/10.1139/cjp-2013-0524

Hill R. M., Philos. Mag., 1971, 23, 59. DOI: https://doi.org/10.1080/14786437108216365

Published

2025-12-22

How to Cite

[1]
F. Serdouk, A. Boumali, M. L. Benkhedir, and Y. Goutal, “Investigation of density of states and charge carrier mobility in amorphous semiconductors via time-of-flight photocurrent analysis”, Condens. Matter Phys., vol. 28, no. 4, p. 43801, Dec. 2025, doi: 10.5488/cmp.28.43801.

Similar Articles

1-10 of 84

You may also start an advanced similarity search for this article.