Be and Be-related impurities in diamond: density functional theory study
DOI:
https://doi.org/10.5488/cmp.28.43802Keywords:
diamond, beryllium, nitrogen, n-type, p-type, first principleAbstract
First-principles density functional simulations were employed to investigate the geometries, electrical properties, and hyperfine structures of various beryllium-doped diamond configurations, including interstitial (Bei), substitutional (Bes), and beryllium-nitrogen (Be-N) complexes. The incorporation of Be into the diamond lattice is more favorable as a substitutional dopant than as an interstitial dopant, although both processes are endothermic. Interstitial Be could potentially exhibit motional averaging from planar to axial symmetry with an activation energy of 0.1 eV. The most stable Bes configuration has Td symmetry with a spin state of S = 1. Co-doping with nitrogen reduces the formation energy of Bes-Nn (n = 1–4) complexes, which further decreases as the number of nitrogen atoms increases. This is attributed to the smaller covalent radius of nitrogen compared to carbon, resulting in reduced lattice distortion. Bes-N3 and Bes-N4 co-doping introduces shallow donors, while Bes exhibits n-type semiconductivity, but the deep donor level renders it impractical for room-temperature applications. These findings provide valuable insights into the behavior of beryllium as a dopant in diamond and highlight the potential of beryllium-nitrogen co-doping for achieving n-type diamond semiconductors.
References
Fontaine F., Uzan-Saguy C., Philosoph B., Kalish R., Appl. Phys. Lett., 1996, 68, No. 1, 2264–2266. DOI: https://doi.org/10.1063/1.115879
Prins J. F., Diamond Relat. Mater., 2002, 11, 612–617. DOI: https://doi.org/10.1016/S0925-9635(01)00564-7
Tshepe T., Kasl C., Prins J. F., Hoch M. J. R., Phys. Rev. B, 2004, 70, 245107. DOI: https://doi.org/10.1103/PhysRevB.70.245107
Vogel T., Meijer J., Zaitsev A., Diamond Relat. Mater., 2004, 13, No. 10, 1822–1825. DOI: https://doi.org/10.1016/j.diamond.2004.04.005
Tsubouchi N., Ogura M., Kato H., Ri S., Watanabe H., Horino Y., Okushi H., Diamond Relat. Mater., 2005, 14, No. 11, 1969–1972. DOI: https://doi.org/10.1016/j.diamond.2005.08.023
Wu J., Tshepe T., Butler J. E., Hoch M. J. R., Phys. Rev. B, 2005, 71, 113108. DOI: https://doi.org/10.1103/PhysRevB.71.113108
Ueda K., Kasu M., Makimoto T., Appl. Phys. Lett., 2007, 90, No. 12, 122102. DOI: https://doi.org/10.1063/1.2715034
Gheeraert E., Koizumi S., Teraji T., Kanda H., Solid State Commun., 2000, 113, 577–580. DOI: https://doi.org/10.1016/S0038-1098(99)00546-3
Hasegawa M., Teraji T., Koizumi S., Appl. Phys. Lett., 2001, 79, No. 19, 3068–3070. DOI: https://doi.org/10.1063/1.1417514
Nakazawa K., Tachiki M., Kawarada H., Kawamura A., Horiuchi K., Ishikura T., Appl. Phys. Lett., 2003, 82, No. 13, 2074–2076. DOI: https://doi.org/10.1063/1.1563829
Sakaguchi I., N.-Gamo M., Kikuchi Y., Yasu E., Haneda H., Suzuki T., Ando T., Phys. Rev. B, 1999, 60, No. 4, R2139–R2141. DOI: https://doi.org/10.1103/PhysRevB.60.R2139
Gupta S., Weiner B. R., Morell G., Appl. Phys. Lett., 2003, 83, No. 3, 491–493. DOI: https://doi.org/10.1063/1.1591065
Prins J. F., Phys. Rev. B, 2000, 61, No. 11, 7191–7194. DOI: https://doi.org/10.1103/PhysRevB.61.7191
Czelej K., Spiewak P., Kurzydowski K., MRS Adv., 2016, 1, 1–6. DOI: https://doi.org/10.1557/adv.2016.87
Liu X., Chen X., Singh D. J., Stern R. A., Wu J., Petitgirard S., Bina C. R., Jacobsen S. D., Proc. Natl. Acad. Sci. U. S. A., 2019, 116, No. 16, 7703–7711. DOI: https://doi.org/10.1073/pnas.1821612116
Hu M., Bi N., Li S., Su T., Hu Q., Ma H., Jia X., CrystEngComm, 2017, 19, 4571–4575. DOI: https://doi.org/10.1039/C7CE00709D
Othman M. Z., May P. W., Fox N. A., Heard P. J., Diamond Relat. Mater., 2014, 44, 1–71. DOI: https://doi.org/10.1016/j.diamond.2014.02.001
Sque S. J., Jones R., Goss J. P., Briddon P. R., Phys. Rev. Lett., 2004, 92, No. 1, 017402. DOI: https://doi.org/10.1103/PhysRevLett.92.017402
Dai Y., Yan C., Li A., Zhang Y., Han S., Carbon, 2005, 43, 1009–1014. DOI: https://doi.org/10.1016/j.carbon.2004.11.035
Goss J. P., Jones R., Heggie M. I., Ewels C. P., Briddon P. R., Öberg S., Phys. Rev. B, 2002, 65, No. 11, 115207. DOI: https://doi.org/10.1103/PhysRevB.65.115207
Hu X., Li R., Shen H., Dai Y., He X., Carbon, 2004, 42, No. 8, 1501–1506. DOI: https://doi.org/10.1016/j.carbon.2004.01.054
Wang K., Zhang X., Wang F., Phys. Lett. A, 2025, 533, 130215. DOI: https://doi.org/10.1016/j.physleta.2024.130215
Wang K., Zhang X., Wang F., Chem. Phys. Lett., 2025, 865, 141930. DOI: https://doi.org/10.1016/j.cplett.2025.141930
Ueda K., Kasu M., Diamond Relat. Mater., 2009, 18, No. 2-3, 121–123. DOI: https://doi.org/10.1016/j.diamond.2008.10.009
Ueda K., Kasu M., Diamond Relat. Mater., 2008, 17, No. 7, 1269–1272. DOI: https://doi.org/10.1016/j.diamond.2008.01.054
Briddon P. R., Jones R., Phys. Stat. Sol. B, 2000, 217, No. 1, 131–171. DOI: https://doi.org/10.1002/(SICI)1521-3951(200001)217:1<131::AID-PSSB131>3.0.CO;2-M
Rayson M. J., Briddon P. R., Comput. Phys. Commun., 2008, 178, No. 3, 128–1347. DOI: https://doi.org/10.1016/j.cpc.2007.08.007
Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865–38685. DOI: https://doi.org/10.1103/PhysRevLett.77.3865
Monkhorst H. J., Pack J. D., Phys. Rev. B, 1976, 13, No. 12, 5188–5192. DOI: https://doi.org/10.1103/PhysRevB.13.5188
Henkelman G., Uberuaga B. P., Jónsson H., J. Chem. Phys., 2000, 113, No. 22, 9901–9904. DOI: https://doi.org/10.1063/1.1329672
Henkelman G., Jónsson H., J. Chem. Phys., 2000, 113, No. 22, 9978–9985. DOI: https://doi.org/10.1063/1.1323224
Shaw M. J., Briddon P. R., Goss J. P., Rayson M. J., Kerridge A., Harker A. H., Stoneham A. M., Phys. Rev. Lett., 2005, 95, No. 10, 105502. DOI: https://doi.org/10.1103/PhysRevLett.95.105502
Blöchl P. E., Phys. Rev. B, 1994, 50, No. 24, 17953–17979. DOI: https://doi.org/10.1103/PhysRevB.50.17953
Goss J. P., Briddon P. R., Sque S. J., Jones R., Diamond Relat. Mater., 2004, 13, No. 4–8, 684–690. DOI: https://doi.org/10.1016/j.diamond.2003.08.028
Zhang S. B., Northrup J. E., Phys. Rev. Lett., 1991, 67, No. 17, 2339–2342. DOI: https://doi.org/10.1103/PhysRevLett.67.2339
Zhou D., Zhang J., Yue R., Wang Y., In: Computational Science – ICCS 2023, Mikyška J., de Mulatier C., Paszynski M., Krzhizhanovskaya V. V., Dongarra J. J., Sloot P. M. (Eds.), Springer Nature Switzerland, Cham, 283–294.
Yan C., Dai Y., Huang B., Long R., Guo M., Comput. Mater. Sci, 2009, 44, No. 4, 1286–1290. DOI: https://doi.org/10.1016/j.commatsci.2008.08.017
Butorac B., Mainwood A., Phys. Rev. B, 2008, 78, No. 23, 235204. DOI: https://doi.org/10.1103/PhysRevB.78.235204
Job R.,Werner M., Denisenko A., Zaitsev A., Fahrner W. R., Diamond Relat. Mater., 1996, 5, No. 6-8, 757–760. DOI: https://doi.org/10.1016/0925-9635(95)00458-0
Prawer S., Uzan-Saguy C., Braunstein G., Kalish R., Appl. Phys. Lett., 1993, 63, No. 18, 2502–2504. DOI: https://doi.org/10.1063/1.110462
Yang L., Cobalt and Beryllium in Diamond: Experimental and First-Principles Calculations of Magnetic and Electronic Properties, Ph.D. thesis, University of Bristol, 2021.
Sun X., Shen W., Cheng C., Wu G., Liang K., Zhang D., Wang S., J. Phys. D: Appl. Phys., 2024, 57, No. 21, 215107. DOI: https://doi.org/10.1088/1361-6463/ad2be1
Dannefaer S., Pu A., Kerr D., Diamond Relat. Mater., 2001, 10, 2113–2117. DOI: https://doi.org/10.1016/S0925-9635(01)00489-7
Downloads
Published
License
Copyright (c) 2025 K. M. Etmimi, M. A. Ojalah, A. M. Abotruma

This work is licensed under a Creative Commons Attribution 4.0 International License.







