Be and Be-related impurities in diamond: density functional theory study

Authors

DOI:

https://doi.org/10.5488/cmp.28.43802

Keywords:

diamond, beryllium, nitrogen, n-type, p-type, first principle

Abstract

First-principles density functional simulations were employed to investigate the geometries, electrical properties, and hyperfine structures of various beryllium-doped diamond configurations, including interstitial (Bei), substitutional (Bes), and beryllium-nitrogen (Be-N) complexes. The incorporation of Be into the diamond lattice is more favorable as a substitutional dopant than as an interstitial dopant, although both processes are endothermic. Interstitial Be could potentially exhibit motional averaging from planar to axial symmetry with an activation energy of 0.1 eV. The most stable Bes configuration has Td symmetry with a spin state of S = 1. Co-doping with nitrogen reduces the formation energy of Bes-Nn (n = 1–4) complexes, which further decreases as the number of nitrogen atoms increases. This is attributed to the smaller covalent radius of nitrogen compared to carbon, resulting in reduced lattice distortion. Bes-N3 and Bes-N4 co-doping introduces shallow donors, while Bes exhibits n-type semiconductivity, but the deep donor level renders it impractical for room-temperature applications. These findings provide valuable insights into the behavior of beryllium as a dopant in diamond and highlight the potential of beryllium-nitrogen co-doping for achieving n-type diamond semiconductors.

References

Fontaine F., Uzan-Saguy C., Philosoph B., Kalish R., Appl. Phys. Lett., 1996, 68, No. 1, 2264–2266.

Prins J. F., Diamond Relat. Mater., 2002, 11, 612–617.

Tshepe T., Kasl C., Prins J. F., Hoch M. J. R., Phys. Rev. B, 2004, 70, 245107.

Vogel T., Meijer J., Zaitsev A., Diamond Relat. Mater., 2004, 13, No. 10, 1822–1825.

Tsubouchi N., Ogura M., Kato H., Ri S., Watanabe H., Horino Y., Okushi H., Diamond Relat. Mater., 2005, 14, No. 11, 1969–1972.

Wu J., Tshepe T., Butler J. E., Hoch M. J. R., Phys. Rev. B, 2005, 71, 113108.

Ueda K., Kasu M., Makimoto T., Appl. Phys. Lett., 2007, 90, No. 12, 122102.

Gheeraert E., Koizumi S., Teraji T., Kanda H., Solid State Commun., 2000, 113, 577–580.

Hasegawa M., Teraji T., Koizumi S., Appl. Phys. Lett., 2001, 79, No. 19, 3068–3070.

Nakazawa K., Tachiki M., Kawarada H., Kawamura A., Horiuchi K., Ishikura T., Appl. Phys. Lett., 2003, 82, No. 13, 2074–2076.

Sakaguchi I., N.-Gamo M., Kikuchi Y., Yasu E., Haneda H., Suzuki T., Ando T., Phys. Rev. B, 1999, 60, No. 4, R2139–R2141.

Gupta S., Weiner B. R., Morell G., Appl. Phys. Lett., 2003, 83, No. 3, 491–493.

Prins J. F., Phys. Rev. B, 2000, 61, No. 11, 7191–7194.

Czelej K., Spiewak P., Kurzydowski K., MRS Adv., 2016, 1, 1–6.

Liu X., Chen X., Singh D. J., Stern R. A., Wu J., Petitgirard S., Bina C. R., Jacobsen S. D., Proc. Natl. Acad. Sci. U. S. A., 2019, 116, No. 16, 7703–7711.

Hu M., Bi N., Li S., Su T., Hu Q., Ma H., Jia X., CrystEngComm, 2017, 19, 4571–4575.

Othman M. Z., May P. W., Fox N. A., Heard P. J., Diamond Relat. Mater., 2014, 44, 1–71.

Sque S. J., Jones R., Goss J. P., Briddon P. R., Phys. Rev. Lett., 2004, 92, No. 1, 017402.

Dai Y., Yan C., Li A., Zhang Y., Han S., Carbon, 2005, 43, 1009–1014.

Goss J. P., Jones R., Heggie M. I., Ewels C. P., Briddon P. R., Öberg S., Phys. Rev. B, 2002, 65, No. 11, 115207.

Hu X., Li R., Shen H., Dai Y., He X., Carbon, 2004, 42, No. 8, 1501–1506.

Wang K., Zhang X., Wang F., Phys. Lett. A, 2025, 533, 130215.

Wang K., Zhang X., Wang F., Chem. Phys. Lett., 2025, 865, 141930.

Ueda K., Kasu M., Diamond Relat. Mater., 2009, 18, No. 2-3, 121–123.

Ueda K., Kasu M., Diamond Relat. Mater., 2008, 17, No. 7, 1269–1272.

Briddon P. R., Jones R., Phys. Stat. Sol. B, 2000, 217, No. 1, 131–171.

Rayson M. J., Briddon P. R., Comput. Phys. Commun., 2008, 178, No. 3, 128–1347.

Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865–38685.

Monkhorst H. J., Pack J. D., Phys. Rev. B, 1976, 13, No. 12, 5188–5192.

Henkelman G., Uberuaga B. P., Jónsson H., J. Chem. Phys., 2000, 113, No. 22, 9901–9904.

Henkelman G., Jónsson H., J. Chem. Phys., 2000, 113, No. 22, 9978–9985.

Shaw M. J., Briddon P. R., Goss J. P., Rayson M. J., Kerridge A., Harker A. H., Stoneham A. M., Phys. Rev. Lett., 2005, 95, No. 10, 105502.

Blöchl P. E., Phys. Rev. B, 1994, 50, No. 24, 17953–17979.

Goss J. P., Briddon P. R., Sque S. J., Jones R., Diamond Relat. Mater., 2004, 13, No. 4–8, 684–690.

Zhang S. B., Northrup J. E., Phys. Rev. Lett., 1991, 67, No. 17, 2339–2342.

Zhou D., Zhang J., Yue R., Wang Y., In: Computational Science – ICCS 2023, Mikyška J., de Mulatier C., Paszynski M., Krzhizhanovskaya V. V., Dongarra J. J., Sloot P. M. (Eds.), Springer Nature Switzerland, Cham, 283–294.

Yan C., Dai Y., Huang B., Long R., Guo M., Comput. Mater. Sci, 2009, 44, No. 4, 1286–1290.

Butorac B., Mainwood A., Phys. Rev. B, 2008, 78, No. 23, 235204.

Job R.,Werner M., Denisenko A., Zaitsev A., Fahrner W. R., Diamond Relat. Mater., 1996, 5, No. 6-8, 757–760.

Prawer S., Uzan-Saguy C., Braunstein G., Kalish R., Appl. Phys. Lett., 1993, 63, No. 18, 2502–2504.

Yang L., Cobalt and Beryllium in Diamond: Experimental and First-Principles Calculations of Magnetic and Electronic Properties, Ph.D. thesis, University of Bristol, 2021.

Sun X., Shen W., Cheng C., Wu G., Liang K., Zhang D., Wang S., J. Phys. D: Appl. Phys., 2024, 57, No. 21, 215107.

Dannefaer S., Pu A., Kerr D., Diamond Relat. Mater., 2001, 10, 2113–2117.

Published

2025-12-22

How to Cite

[1]
K. M. Etmimi, M. A. Ojalah, and A. M. Abotruma, “Be and Be-related impurities in diamond: density functional theory study”, Condens. Matter Phys., vol. 28, no. 4, p. 43802, Dec. 2025, doi: 10.5488/cmp.28.43802.

Similar Articles

1-10 of 67

You may also start an advanced similarity search for this article.