Be and Be-related impurities in diamond: density functional theory study

Authors

DOI:

https://doi.org/10.5488/cmp.28.43802

Keywords:

diamond, beryllium, nitrogen, n-type, p-type, first principle

Abstract

First-principles density functional simulations were employed to investigate the geometries, electrical properties, and hyperfine structures of various beryllium-doped diamond configurations, including interstitial (Bei), substitutional (Bes), and beryllium-nitrogen (Be-N) complexes. The incorporation of Be into the diamond lattice is more favorable as a substitutional dopant than as an interstitial dopant, although both processes are endothermic. Interstitial Be could potentially exhibit motional averaging from planar to axial symmetry with an activation energy of 0.1 eV. The most stable Bes configuration has Td symmetry with a spin state of S = 1. Co-doping with nitrogen reduces the formation energy of Bes-Nn (n = 1–4) complexes, which further decreases as the number of nitrogen atoms increases. This is attributed to the smaller covalent radius of nitrogen compared to carbon, resulting in reduced lattice distortion. Bes-N3 and Bes-N4 co-doping introduces shallow donors, while Bes exhibits n-type semiconductivity, but the deep donor level renders it impractical for room-temperature applications. These findings provide valuable insights into the behavior of beryllium as a dopant in diamond and highlight the potential of beryllium-nitrogen co-doping for achieving n-type diamond semiconductors.

References

Fontaine F., Uzan-Saguy C., Philosoph B., Kalish R., Appl. Phys. Lett., 1996, 68, No. 1, 2264–2266. DOI: https://doi.org/10.1063/1.115879

Prins J. F., Diamond Relat. Mater., 2002, 11, 612–617. DOI: https://doi.org/10.1016/S0925-9635(01)00564-7

Tshepe T., Kasl C., Prins J. F., Hoch M. J. R., Phys. Rev. B, 2004, 70, 245107. DOI: https://doi.org/10.1103/PhysRevB.70.245107

Vogel T., Meijer J., Zaitsev A., Diamond Relat. Mater., 2004, 13, No. 10, 1822–1825. DOI: https://doi.org/10.1016/j.diamond.2004.04.005

Tsubouchi N., Ogura M., Kato H., Ri S., Watanabe H., Horino Y., Okushi H., Diamond Relat. Mater., 2005, 14, No. 11, 1969–1972. DOI: https://doi.org/10.1016/j.diamond.2005.08.023

Wu J., Tshepe T., Butler J. E., Hoch M. J. R., Phys. Rev. B, 2005, 71, 113108. DOI: https://doi.org/10.1103/PhysRevB.71.113108

Ueda K., Kasu M., Makimoto T., Appl. Phys. Lett., 2007, 90, No. 12, 122102. DOI: https://doi.org/10.1063/1.2715034

Gheeraert E., Koizumi S., Teraji T., Kanda H., Solid State Commun., 2000, 113, 577–580. DOI: https://doi.org/10.1016/S0038-1098(99)00546-3

Hasegawa M., Teraji T., Koizumi S., Appl. Phys. Lett., 2001, 79, No. 19, 3068–3070. DOI: https://doi.org/10.1063/1.1417514

Nakazawa K., Tachiki M., Kawarada H., Kawamura A., Horiuchi K., Ishikura T., Appl. Phys. Lett., 2003, 82, No. 13, 2074–2076. DOI: https://doi.org/10.1063/1.1563829

Sakaguchi I., N.-Gamo M., Kikuchi Y., Yasu E., Haneda H., Suzuki T., Ando T., Phys. Rev. B, 1999, 60, No. 4, R2139–R2141. DOI: https://doi.org/10.1103/PhysRevB.60.R2139

Gupta S., Weiner B. R., Morell G., Appl. Phys. Lett., 2003, 83, No. 3, 491–493. DOI: https://doi.org/10.1063/1.1591065

Prins J. F., Phys. Rev. B, 2000, 61, No. 11, 7191–7194. DOI: https://doi.org/10.1103/PhysRevB.61.7191

Czelej K., Spiewak P., Kurzydowski K., MRS Adv., 2016, 1, 1–6. DOI: https://doi.org/10.1557/adv.2016.87

Liu X., Chen X., Singh D. J., Stern R. A., Wu J., Petitgirard S., Bina C. R., Jacobsen S. D., Proc. Natl. Acad. Sci. U. S. A., 2019, 116, No. 16, 7703–7711. DOI: https://doi.org/10.1073/pnas.1821612116

Hu M., Bi N., Li S., Su T., Hu Q., Ma H., Jia X., CrystEngComm, 2017, 19, 4571–4575. DOI: https://doi.org/10.1039/C7CE00709D

Othman M. Z., May P. W., Fox N. A., Heard P. J., Diamond Relat. Mater., 2014, 44, 1–71. DOI: https://doi.org/10.1016/j.diamond.2014.02.001

Sque S. J., Jones R., Goss J. P., Briddon P. R., Phys. Rev. Lett., 2004, 92, No. 1, 017402. DOI: https://doi.org/10.1103/PhysRevLett.92.017402

Dai Y., Yan C., Li A., Zhang Y., Han S., Carbon, 2005, 43, 1009–1014. DOI: https://doi.org/10.1016/j.carbon.2004.11.035

Goss J. P., Jones R., Heggie M. I., Ewels C. P., Briddon P. R., Öberg S., Phys. Rev. B, 2002, 65, No. 11, 115207. DOI: https://doi.org/10.1103/PhysRevB.65.115207

Hu X., Li R., Shen H., Dai Y., He X., Carbon, 2004, 42, No. 8, 1501–1506. DOI: https://doi.org/10.1016/j.carbon.2004.01.054

Wang K., Zhang X., Wang F., Phys. Lett. A, 2025, 533, 130215. DOI: https://doi.org/10.1016/j.physleta.2024.130215

Wang K., Zhang X., Wang F., Chem. Phys. Lett., 2025, 865, 141930. DOI: https://doi.org/10.1016/j.cplett.2025.141930

Ueda K., Kasu M., Diamond Relat. Mater., 2009, 18, No. 2-3, 121–123. DOI: https://doi.org/10.1016/j.diamond.2008.10.009

Ueda K., Kasu M., Diamond Relat. Mater., 2008, 17, No. 7, 1269–1272. DOI: https://doi.org/10.1016/j.diamond.2008.01.054

Briddon P. R., Jones R., Phys. Stat. Sol. B, 2000, 217, No. 1, 131–171. DOI: https://doi.org/10.1002/(SICI)1521-3951(200001)217:1<131::AID-PSSB131>3.0.CO;2-M

Rayson M. J., Briddon P. R., Comput. Phys. Commun., 2008, 178, No. 3, 128–1347. DOI: https://doi.org/10.1016/j.cpc.2007.08.007

Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865–38685. DOI: https://doi.org/10.1103/PhysRevLett.77.3865

Monkhorst H. J., Pack J. D., Phys. Rev. B, 1976, 13, No. 12, 5188–5192. DOI: https://doi.org/10.1103/PhysRevB.13.5188

Henkelman G., Uberuaga B. P., Jónsson H., J. Chem. Phys., 2000, 113, No. 22, 9901–9904. DOI: https://doi.org/10.1063/1.1329672

Henkelman G., Jónsson H., J. Chem. Phys., 2000, 113, No. 22, 9978–9985. DOI: https://doi.org/10.1063/1.1323224

Shaw M. J., Briddon P. R., Goss J. P., Rayson M. J., Kerridge A., Harker A. H., Stoneham A. M., Phys. Rev. Lett., 2005, 95, No. 10, 105502. DOI: https://doi.org/10.1103/PhysRevLett.95.105502

Blöchl P. E., Phys. Rev. B, 1994, 50, No. 24, 17953–17979. DOI: https://doi.org/10.1103/PhysRevB.50.17953

Goss J. P., Briddon P. R., Sque S. J., Jones R., Diamond Relat. Mater., 2004, 13, No. 4–8, 684–690. DOI: https://doi.org/10.1016/j.diamond.2003.08.028

Zhang S. B., Northrup J. E., Phys. Rev. Lett., 1991, 67, No. 17, 2339–2342. DOI: https://doi.org/10.1103/PhysRevLett.67.2339

Zhou D., Zhang J., Yue R., Wang Y., In: Computational Science – ICCS 2023, Mikyška J., de Mulatier C., Paszynski M., Krzhizhanovskaya V. V., Dongarra J. J., Sloot P. M. (Eds.), Springer Nature Switzerland, Cham, 283–294.

Yan C., Dai Y., Huang B., Long R., Guo M., Comput. Mater. Sci, 2009, 44, No. 4, 1286–1290. DOI: https://doi.org/10.1016/j.commatsci.2008.08.017

Butorac B., Mainwood A., Phys. Rev. B, 2008, 78, No. 23, 235204. DOI: https://doi.org/10.1103/PhysRevB.78.235204

Job R.,Werner M., Denisenko A., Zaitsev A., Fahrner W. R., Diamond Relat. Mater., 1996, 5, No. 6-8, 757–760. DOI: https://doi.org/10.1016/0925-9635(95)00458-0

Prawer S., Uzan-Saguy C., Braunstein G., Kalish R., Appl. Phys. Lett., 1993, 63, No. 18, 2502–2504. DOI: https://doi.org/10.1063/1.110462

Yang L., Cobalt and Beryllium in Diamond: Experimental and First-Principles Calculations of Magnetic and Electronic Properties, Ph.D. thesis, University of Bristol, 2021.

Sun X., Shen W., Cheng C., Wu G., Liang K., Zhang D., Wang S., J. Phys. D: Appl. Phys., 2024, 57, No. 21, 215107. DOI: https://doi.org/10.1088/1361-6463/ad2be1

Dannefaer S., Pu A., Kerr D., Diamond Relat. Mater., 2001, 10, 2113–2117. DOI: https://doi.org/10.1016/S0925-9635(01)00489-7

Published

2025-12-22

How to Cite

[1]
K. M. Etmimi, M. A. Ojalah, and A. M. Abotruma, “Be and Be-related impurities in diamond: density functional theory study”, Condens. Matter Phys., vol. 28, no. 4, p. 43802, Dec. 2025, doi: 10.5488/cmp.28.43802.

Similar Articles

1-10 of 67

You may also start an advanced similarity search for this article.