A computational study of thermoelectric conversion in the PbSexTe1−x semiconductor alloys

Authors

DOI:

https://doi.org/10.5488/cmp.28.43705

Keywords:

lead, DFT, semiconductor IV-VI, electronic properties, thermoelectric properties

Abstract

The present theoretical study focuses on the structural, electronic and thermoelectric properties of PbTe, PbSe and their ternary alloys PbSexTe1−x, using the density functional theory (DFT) by the full potential linearised augmented plane wave (FP-LAPW) method implemented in Wien2k code. Structural properties were performed by using the generalized gradient approximation of Perdew Burke and Ernzenhof (GGA-PBE) scheme. The results show that the calculated lattice parameters are in good agreement with theoretical data previously obtained. For electronic properties, we noticed that for all the compounds of PbSexTe1−x, we have a direct band gap in L point. For thermoelectric properties, we used BoltzTraP2 code and Gibbs2 code. Our results show that the PbSexTe1−x compounds have reached a value of 2.55 for the figure of merit, which indicates that our material is a good thermoelectric candidate.

References

Kumar A., Thorbole A., Gupta R. K., Mater. Sci. Semicond. Process., 2025, 185, 108943.

Andrea L., Modélisation du transport thermique dans des matériaux thermoélectriques, Ph.D. thesis, Université Pierre et Marie Curie-Paris VI, 2016, (in French).

Pandit A., Haleoot R., Hamad B., J. Electron. Mater., 2020, 49, 586–592.

Wei X.-P., Du L.-L., Shen J., Sun Z.-Q., Zhang Z.-M., Chang W.-L., Tao X., Mater. Sci. Semicond. Process., 2024, 169, 107856.

Jawad M., Rahman A. U., Rafique Q., Azam S., Ijaz F., Mater. Sci. Semicond. Process., 2024, 173, 108105.

Witting I. T., Chasapis T. C., Ricci F., Peters M., Heinz N. A., Hautier G., Snyder G. J., Adv. Electron. Mater., 2019, 5, No. 6, 1800904.

Park O., Park S. J., Kim H.-S., Lee S.W., Heo M., Kim S.-i., Mater. Sci. Semicond. Process., 2023, 166, 107723.

Zair A., Nabil Brahmi B.-E., Bekhechi S., Int. J. Mod. Phys. C, 2023, 34, No. 10, 2350130.

Khan A. A., Khan I., Ahmad I., Ali Z., Mater. Sci. Semicond. Process., 2016, 48, 85–94.

Naeemullah Murtaza G., Khenata R., Hassan N., Naeem S., Khalid M., Bin Omran S., Comput. Mater. Sci., 2014, 83, 496–503.

Wei S.-H., Zunger A., Phys. Rev. B, 1997, 55, No. 20, 13605.

Zhang Y., Ke X., Chen C., Yang J., Kent P., Phys. Rev. B, 2009, 80, No. 2, 024304.

Bauer Pereira P., Sergueev I., Gorsse S., Dadda J., Müller E., Hermann R. P., Phys. Status Solidi B, 2013, 250, No. 7, 1300–1307.

Chen X., Zhang K., Ramalingom Pillai A. D., Baumgart H., Kochergin V., Meet. Abstr., 2014, MA2014-02, No. 30, 1601–1601.

Shah S. H., Huang T., Shakeel S., Khan S., Ashraf M. W., Murtaza G., Mater. Sci. Semicond. Process., 2024, 178, 108400.

Louie S. G., Chan Y.-H., da Jornada F. H., Li Z., Qiu D. Y., Nat. Mater., 2021, 20, No. 6, 728–735.

Kovalenko M., Bovgyra O., Kapustianyk V., Kozachenko O., Condens. Matter Phys., 2024, 27, No. 2, 23702.

Bradji B., Benkhedir M., Condens. Matter Phys., 2024, 27, No. 4, 43602.

Kozina A., Aguilar M., Pizio O., Sokołowski S., Condens. Matter Phys., 2024, 27, No. 1, 13604.

Sayah M., Zeffane S., Mokhtari M., Dahmane F., Zekri L., Khenata R., Zekri N., Condens. Matter Phys., 2021, 24, No. 2, 23703.

Petersen M., Wagner F., Hufnagel L., Scheffler M., Blaha P., Schwarz K., Comput. Phys. Commun., 2000, 126, No. 3, 294–309.

Adnane M., Djoudi L., Merabet M., Boucharef M., Dahmane F., Benalia S., Mokhtari M., Rached D., Condens. Matter Phys., 2020, 23, No. 3, 33705.

Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1998, 80, No. 4, 891–891.

Murnaghan F. D., Proc. Natl. Acad. Sci. U. S. A., 1944, 30, No. 9, 244–247.

Boukhris N., Meradji H., Ghemid S., Drablia S., Hassan F. E. H., Phys. Scr., 2011, 83, No. 6, 065701.

Madsen G. K., Carrete J., Verstraete M. J., Comput. Phys. Commun., 2018, 231, 140–145.

Otero-de-la Roza A., Abbasi-Pérez D., Luaña V., Comput. Phys. Commun., 2011, 182, No. 10, 2232–2248.

Otero-de-la Roza A., Luaña V., Comput. Phys. Commun., 2011, 182, No. 8, 1708–1720.

Bouchenaki M., Karaouzène L., Brahmi B., Slimane M. K., Condens. Matter Phys., 2025, 28, No. 1, 13701.

Agrawal B. K., Agrawal S., Yadav P., Kumar S., J. Phys.: Condens. Matter, 1997, 9, No. 8, 1763.

Blaha P., Schwarz K., Tran F., Laskowski R., Madsen G. K., Marks L. D., J. Chem. Phys., 2020, 152, No. 7, 074101.

Lach-Hab M., Papaconstantopoulos D. A., Mehl M. J., J. Phys. Chem. Solids, 2002, 63, No. 5, 833–841.

Brahmi B.-e. N., Ouahrani T., Boufatah R. M., Boudefla R., Bekhechi S., Merad A. E., Comput. Condens. Matter, 2018, 17, e00337.

Vegard L., Z. Phys., 1921, 5, No. 1, 17–26.

Chanda S., Ghosh D., Debnath B., Debbarma M., Bhattacharjee R., Chattopadhyaya S., J. Comput. Electron., 2020, 19, No. 1, 1–25.

Ravindra N. M., Auluck S., Srivastava V. K., Phys. Status Solidi A, 1979, 52, No. 2, K151–K155.

Labidi M., Meradji H., Ghemid S., Labidi S., El Haj Hassan F., Mod. Phys. Lett. B, 2011, 25, No. 07, 473–486.

Charifi Z., Baaziz H., Bouarissa N., Int. J. Mod. Phys. B, 2004, 18, No. 01, 137–142.

Van Vechten J., Bergstresser T., Phys. Rev. B, 1970, 1, No. 8, 3351.

Slack G. A., J. Phys. Chem. Solids, 1973, 34, No. 2, 321–335.

Published

2025-12-22

How to Cite

[1]
M. Kaid Slimane, B. N. Brahmi, M. Bouchenaki, and S. Bekhechi, “A computational study of thermoelectric conversion in the PbSexTe1−x semiconductor alloys”, Condens. Matter Phys., vol. 28, no. 4, p. 43705, Dec. 2025, doi: 10.5488/cmp.28.43705.

Most read articles by the same author(s)

Similar Articles

31-40 of 80

You may also start an advanced similarity search for this article.