Tripartite entanglement in mixed-spin triangle trimmer

Authors

  • Zh. Adamyan Laboratory of Theoretical Physics, Yerevan State University, 1 Alex Manoogian St., 0025 Yerevan, Armenia; CANDLE, Synchrotron Research Institute, 31 Acharyan St., 0040 Yerevan, Armenia https://orcid.org/0000-0001-5937-2675
  • V. Ohanyan Laboratory of Theoretical Physics, Yerevan State University, 1 Alex Manoogian St., 0025 Yerevan, Armenia; CANDLE, Synchrotron Research Institute, 31 Acharyan St., 0040 Yerevan, Armenia https://orcid.org/0000-0002-7810-7321

DOI:

https://doi.org/10.5488/cmp.28.33703

Keywords:

tripartite entanglement, single molecule magnets, non-conserving magnetization

Abstract

Heisenberg model spin systems offer favourable and manageable physical settings for generating and manipulating entangled quantum states. In this work mixed spin-(1/2,1/2,1) Heisenberg spin trimmer with two different but isotropic Landé g-factors and two different exchange constants is considered. The study undertakes the task of finding the optimal parameters to create entangled states and control them by external magnetic field. The primary objective of this work is to examine the tripartite entanglement of a system and the dependence of the tripartite entanglement on various system parameters. Particularly, the effects of non-conserving magnetization are in the focus of our research. The source of non-commutativity between the magnetic moment operator and the Hamiltonian is non-uniformity of g-factors. To quantify the tripartite entanglement, an entanglement measure refered to as “tripartite negativity” has been used in this work.

References

Amico L., Fazio R., Osterloh A., Vedral V., Rev. Mod. Phys., 2008, 80, 517. DOI: https://doi.org/10.1103/RevModPhys.80.517

Göhne O., Tóth G., Phys. Rep., 2009, 474, 1. DOI: https://doi.org/10.1016/j.physrep.2009.02.004

Bennett C. H., DiVincenzo D. P., Smolin J. A., Wootters W. K., Phys. Rev. A, 1996, 54, 3824. DOI: https://doi.org/10.1103/PhysRevA.54.3824

Bennett C. H., Brassard G., Popescu S., Schumacher B., Smolin J. A., Wootters W. K., Phys. Rev. Lett, 1996, 76, 722. DOI: https://doi.org/10.1103/PhysRevLett.76.722

Ekert A. K., Nature, 1992, 358, 14. DOI: https://doi.org/10.1038/358014a0

Bennett C. H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W. K., Phys. Rev. Lett., 1993, 70, 1895. DOI: https://doi.org/10.1103/PhysRevLett.70.1895

Bouwmeester D., Pan J. W., Mattle K., Eibl M., Weinfurter H., Zeilinger A., Nature, 1997, 390, 575. DOI: https://doi.org/10.1038/37539

Cho J., Lee H-W., Phys. Rev. Lett., 2005, 95, 160501. DOI: https://doi.org/10.1103/PhysRevLett.95.160501

Jin X.-M., Ren J.-G., Yang B., Yi Z.-H., Zhou F., Xu X.-F., Wang S.-K., Yang D., Hu Y.-F., Jiang S., Yang T., Yin H., Chen K., Peng C.-Z., Pan J.-W., Nat. Photonics, 2010, 4, 376. DOI: https://doi.org/10.1038/nphoton.2010.87

Baur M., Fedorov A., Steffen L., Filipp S., da Silva M. P., Wallraff A., Phys. Rev. Lett., 2012, 108, 040502. DOI: https://doi.org/10.1103/PhysRevLett.108.040502

Björk G., Laghaout A., Andersen U. L., Phys. Rev. A, 2012, 85, 022316. DOI: https://doi.org/10.1103/PhysRevA.85.022316

Kok P., Munro W. J., Nemoto K., Ralph T. C., Dowling J. P., Milburn G. J., Rev. Mod. Phys., 2007, 79, 135. DOI: https://doi.org/10.1103/RevModPhys.79.135

Kim J., Lee J.-S., Lee S., Cheong C., Phys. Rev. A, 2000, 62, 022312. DOI: https://doi.org/10.1103/PhysRevA.62.022312

Brodutch A., Terno D. R., Phys. Rev. A, 2011, 83, 010301(R). DOI: https://doi.org/10.1103/PhysRevA.83.010301

Vedral V., Kashefi E., Phys. Rev. Lett., 2002, 89, 037903. DOI: https://doi.org/10.1103/PhysRevLett.89.037903

Avella A., Brida G., Degiovanni I. P., Genovese M., Gramegna M., Traina P., Phys. Rev. A, 2010, 82, 062309. DOI: https://doi.org/10.1103/PhysRevA.82.062309

Coronado E., Nat. Rev. Mater., 2020, 5, 87. DOI: https://doi.org/10.1038/s41578-019-0146-8

Kahn O., Molecular Magnetism, New York, 1993.

Leuenberger M. N., Loss D., Nature, 2001, 410, 789. DOI: https://doi.org/10.1038/35071024

Stepanenko D., Trif M., Loss D., Inorg. Chim. Acta, 2008, 361, 3740. DOI: https://doi.org/10.1016/j.ica.2008.02.066

Sessoli R., ACS Cent. Sci., 2015, 1, 473. DOI: https://doi.org/10.1021/acscentsci.5b00384

Ananikian N. S., Ananikyan L. N., Chakhmakhchyan L. A., Kocharian A. N., J. Phys. A: Math. Theor., 2011, 44, 025001. DOI: https://doi.org/10.1088/1751-8113/44/2/025001

Ananikian N., Lazaryan H., Nalbandyan M., Eur. Phys. J. B, 2012, 85, 223. DOI: https://doi.org/10.1140/epjb/e2012-30289-5

Strečka J., Rojas O., Verkholyak T., Lyra M. L., Phys. Rev. E, 2014, 89, 022143. DOI: https://doi.org/10.1103/PhysRevE.89.022143

Carvalho I. M., Torrico J., de Souza S. M., Rojas M., Rojas O., J. Magn. Magn. Mater., 2018, 465, 323. DOI: https://doi.org/10.1016/j.jmmm.2018.06.018

Souza F., Lyra M. L., Strečka J., Pereira M. S. S., J. Magn. Magn. Mater., 2019, 471, 423. DOI: https://doi.org/10.1016/j.jmmm.2018.09.121

Souza F., Veríssimo L. M., Strečka J., Lyra M. L., Pereira M. S. S., Phys. Rev. B, 2020, 102, 064414.

Adamyan Zh., Muradyan S., Ohanyan V., J. Contemp. Phys., 2020, 55, 292. DOI: https://doi.org/10.3103/S1068337220040027

Čenčarikova H., Strečka J., Phys. Rev. B, 2020, 102, 184419. DOI: https://doi.org/10.1103/PhysRevE.102.012132

Ekiz C., Strečka J., Acta Phys. Pol. A, 2020, 137, 592. DOI: https://doi.org/10.12693/APhysPolA.137.592

Karĺová K., Strečka J., Acta Phys. Pol. A, 2020, 137, 595. DOI: https://doi.org/10.12693/APhysPolA.137.595

Strečka J., Krupnitska O., Richter J., EPL, 2020, 132, 30004. DOI: https://doi.org/10.1209/0295-5075/132/30004

Gálisová L., Strečka J., Verkholyak T., Havadej S., Physica E, 2021, 125, 114089. DOI: https://doi.org/10.1016/j.physe.2020.114089

Gálisová L., Kaczor M., Entropy, 2021, 23, 1671. DOI: https://doi.org/10.3390/e23121671

Gálisová L., J. Magn. Magn. Mater., 2022, 561, 169721.

Benabdallah F., Haddadi S., Arian Zad H., Pourkarimi M. R., Daoud M., Ananikian N., Sci. Rep., 2022, 12, 6406. DOI: https://doi.org/10.1038/s41598-022-10248-2

Zad H. A., Zoshki A., Ananikian N., Jaščur M., J. Magn. Magn. Mater., 2022, 559, 169533. DOI: https://doi.org/10.1016/j.jmmm.2022.169533

Zheng Y.-D., Zhou B., Physica A, 2022, 603, 127753. DOI: https://doi.org/10.1016/j.physa.2022.127765

Adamyan Zh., Ohanyan V., Phys. Rev. E, 2024, 110, 034131. DOI: https://doi.org/10.1103/PhysRevE.110.034131

Ghannadan A., Arian Zad H., Haddadi S., Strečka J., Adamyan Zh., Ohanyan V., Phys. Rev. A, 2025, 111, No. 2, 022605. DOI: https://doi.org/10.1103/PhysRevA.111.022605

Strečka J., Jaščur M., Hagiwara M., Minami K., Narumi Y., Kindo K., Phys. Rev. B, 2005, 72, 024459.

Visinescu D., Madalan A. M., Andruh M., Duhayon C., Sutter J.-P., Ungur L., Van den Heuvel W., Chibotaru L. F., Chem. Eur. J., 2009, 15, 11808. DOI: https://doi.org/10.1002/chem.200902408

Van den Heuvel W., Chibotaru L. F., Phys. Rev. B, 2010, 82, 174436. DOI: https://doi.org/10.1103/PhysRevB.82.174436

Bellucci S., Ohanyan V., Rojas O., EPL, 2014, 105, 47012. DOI: https://doi.org/10.1209/0295-5075/105/47012

Ohanyan V., Rojas O., Strečka J., Bellucci S., Phys. Rev. B, 2015, 92, 214423. DOI: https://doi.org/10.1103/PhysRevB.92.214423

Torrico J., Rojas M., de Souza S. M., Rojas O., Phys. Lett., 2016, 380, 3655. DOI: https://doi.org/10.1016/j.physleta.2016.08.007

Torrico J., Ohanyan V., Rojas O., J. Magn. Magn. Mater, 2018, 454, 85. DOI: https://doi.org/10.1016/j.jmmm.2018.01.044

Varizi A. D., Drumond R. C., Phys. Rev. E, 2019, 100, 022104. DOI: https://doi.org/10.1103/PhysRevE.100.022104

Krokhmalskii T., Verkholyak T., Baran O., Ohanyan V., Derzhko O., Phys. Rev. B, 2020, 102, 144403.

Pandey T., Chitov G. Y., Phys. Rev. B, 2020, 102, 054436. DOI: https://doi.org/10.1103/PhysRevB.102.054436

Japaridze G. I., Cheraghi H., Mahdavifar S., Phys. Rev. E, 2021, 104, 014131. DOI: https://doi.org/10.1103/PhysRevE.104.014134

Baran O. R., Ukr. J. Phys., 2023, 68, 488. DOI: https://doi.org/10.15407/ujpe68.7.488

Vargová H., Strečka J., Eur. Phys. J. Plus, 2022, 137, 490. DOI: https://doi.org/10.1140/epjp/s13360-022-02694-8

Adamyan Zh., J. Contemp. Phys., 2024, 59.3, 279–286. DOI: https://doi.org/10.1134/S1068337224700336

Bohrdt A., Homeier L., Reinmoser C., Demler E., Grusdt F., Ann. Phys., 2021, 435, 168651. DOI: https://doi.org/10.1016/j.aop.2021.168651

Horodecki R., Horodecki P., Horodecki M., Horodecki K., Rev. Mod. Phys., 2009, 81, 865. DOI: https://doi.org/10.1103/RevModPhys.81.865

Vidal G., Werner R. W., Phys. Rev. A, 2002, 65, 032314. DOI: https://doi.org/10.1103/PhysRevA.65.032314

Sabín C., García-Alcaine G., Eur. Phys. J. D, 2008, 48, 435–442. DOI: https://doi.org/10.1140/epjd/e2008-00112-5

Published

2025-09-23

How to Cite

[1]
Z. Adamyan and V. Ohanyan, “Tripartite entanglement in mixed-spin triangle trimmer”, Condens. Matter Phys., vol. 28, no. 3, p. 33703, Sep. 2025, doi: 10.5488/cmp.28.33703.

Similar Articles

1-10 of 51

You may also start an advanced similarity search for this article.