Absorption and scattering of light by metal-dielectric nanoeggs
DOI:
https://doi.org/10.5488/cmp.28.43702Keywords:
surface plasmon resonance, nanoeggs, polarizability, absorption and scattering cross-sections, dielectric function, effective relaxation rate, radiation efficiencyAbstract
The optical and plasmonic properties of metal-dielectric nanoeggs were investigated in this study. Frequency dependencies of polarizability, absorption and scattering cross-sections, and radiation efficiency were determined. Expressions describing the size-dependent behavior of surface plasmon resonance frequencies were derived. The causes of blue and red shifts in the maxima of polarizability, absorption, and scattering cross-sections as well as variations in their number and amplitude were identified. Recommendations were proposed regarding the use of materials with maximum radiation efficiency in different spectral ranges.
References
Maier S. A., Kik P. G., Atwater H. A., Meltzer S., Harel E., Koel B. E., Requicha A. A. G., Nat. Mater., 2003, 2, 229–232.
Hernández J. V., Noordam L. D., Robicheaux F. J., J. Phys. Chem. B, 2005, 109, 15808.
Koenderink A. F., Polman A., Phys. Rev. B, 2006, 74, 033402.
Maniuk M. S., Korotun A. V., Kurbatsky V. P., Low Temp. Phys., 2025, 51, 143,.
Sönnichsen C., Franzl T., Wilk T., von Plessen G., Feldmann J., New J. Phys., 2002, 4, 93.
Arbouet A., Christofilos D., Del Fatti N., Vallée F., Huntzinger J. R., Arnaud L., Billaud P., Broyer M., Phys. Rev. Lett., 2004, 93, 127401.
Lee S. J., Guan Z., Xu H., Moskovits M., J. Phys. Chem. C, 2007, 111, 17985–17988.
Kelly K. L., Coronado E., Zhao L. L., Schatz G. C., J. Phys. Chem. B, 2003, 107, 668–677.
Oshikane Y., Kataoka T., Okuda M., Hara S., Inoue H., Nakano M., Sci. Technol. Adv. Mater., 2007, 8, 181–185.
Nithyananda K., de Coene Y., Nagaraja V. S., Ahadzadeh S., Van Landeghem M., Verbiest T., Deferme W., Nanoscale Adv., 2023, 5, 1750–1759.
Lakowicz J. R., Fu Y., Laser Photonics Rev., 2009, 3, 221–232.
Zielinska Z., Oldak L., Gorodkiewicz E., Talanta, 2025, 284, 127247.
Aslan K., Lakowicz J. R., Geddes C., Curr. Opin. Chem. Biol., 2005, 9, 538–544.
Laurent G., Félidj N., Aubard J., Lévi G., Krenn J. R., Hohenau A., Schider G., Leitner A., Aussenegg F. R., J. Chem. Phys., 2005, 122, 011102.
Eustis S., El-Sayed M. A., Chem. Soc. Rev., 2006, 35, 209–217.
Grady N. K., Halas N. J., Nordlander P., Chem. Phys. Lett., 2004, 399, 167–171.
Sosa I. O., Noguez C., Barrera R. G., J. Phys. Chem. B, 2003, 107, 6269–6275.
Grabar K. C., Freeman R. G., Hommer M. B., Natan M. J., Anal. Chem., 1995, 67, 735–743.
Hulteen J. C., Van Duyne R. P., J. Vac. Sci. Technol., A, 1995, 13, 1553–1558.
Bastys V., Pastoriza-Santos I., Rodríguez-González B., Vaisnoras R., Liz-Marzán L. M., Adv. Funct. Mater., 2006, 16, 766–773.
Nikoobakht B., El-Sayed M. A., Chem. Mater., 2003, 15, 1957–1962.
Sun Y. G., Xia Y. N., Science, 2002, 298, 2176–2179.
Oldenburg S. J., Averitt R. D., Westcott S. L., Halas N. J., Chem. Phys. Lett., 1998, 288, 243–247.
Jackson J. B., Halas N. J., J. Phys. Chem. B, 2001, 105, 2743–2746.
Sun Y., Mayers B., Xia Y., Adv. Mater., 2003, 15, 641–645.
Wang H., Brandl D.W., Le F., Nordlander P., Halas N. J., Nano Lett., 2006, 6, 827–832.
Koval A. O., Korotun A. V., Kunytskyi Yu. A., Tatarenko V. A., Titov I. M., Electrodynamics of Plasmon Effects in Nanomaterials, Naukova Dumka, Kyiv, 2021, (in Ukrainian).
Landes C. F., Link S., Mohamed M. B., Nikoobakht B., El-Sayed M. A., Pure Appl. Chem., 2002, 74, 1675–1692.
McLellan J. M., Li Z., Siekkinen A. R., Xia Y., Nano Lett., 2007, 7, 1013–1017.
Korotun A. V., Karandas Ya. V., Reva V. I., Ukr. J. Phys., 2022, 67, 849–856.
Korotun A. V., Pavlishche N. I., Opt. Spectrosc., 2022, 130, 269–273.
Korotun A. V., Low Temp. Phys., 2025, 51, 133–142.
Prodan E., Nordlander P., J. Chem. Phys., 2004, 120, 5444–5461.
Korotun A. V., Koval’ A. A., Titov I. N., J. Appl. Spectrosc., 2020, 87, 240–245.
Wang Y., Zhang Y., Wang Y., Zhang F., Ren H., Gao R., Zhang K., Zhang F., Cui R., Zhao X., Appl. Surf. Sci., 2025, 685, 162071.
Hirsch L. R., Stafford R. J., Bankson J. A., Sershen S. R., Rivera B., Price R. E., Hazle J. D., Halas N. J., West J. L., Proc. Natl. Acad. Sci. U.S.A., 2003, 100, 13549–13554.
Herzog J. B., Knight M. W., Natelson D., Nano Lett., 2014, 14, 499–503.
Fu E. G., Caro M., Zepeda-Ruiz L. A., Wang Y. Q., Baldwin K., Bringa E., Nastasi M., Caro A., Appl. Phys. Lett., 2012, 101, 191607.
González-Rubio G., González-Izquierdo J., Bañares L., Tardajos G., Rivera A., Altantzis T., Bals S., Peña-Rodríguez O., Guerrero-Martínez A., Liz-Marzán L. M., Nano Lett., 2015, 15, 8282–8288.
Wei H., Xu H., Nanoscale, 2013, 5, 10794–10801.
Wu Y., Nordlander P., J. Chem. Phys., 2006, 125, 124708.
Moradi A., Opt. Commun., 2009, 282, 3368–3370.
Moradi A., J. Chem. Phys., 2014, 141, 124121.
Qian J., Sun Y.-D., Li Y.-D. Xu J.-J., Sunet Q., Nanoscale Res. Lett., 2015, 10, 17.
Cho W. J., Jung A., Han S., Lee S.-M., Kang T., Lee K.-H., Choi K. C., Kim J. K., NPG Asia Mater., 2015, 7, e167.
Lombardi A., Grzelczak M. P., Crut A., Maioli P., Pastoriza-Santos I., Liz-Marzán L. M., Del Fatti N., Vallée F., ACS Nano, 2013, 7, 2522–2531.
Korotun A. V., Koval A. O., Reva V. I., J. Phys. Stud., 2019, 23, 2603.
Korotun A. V., Koval’ A. A., Reva V. I., J. Appl. Spectrosc., 2019, 86, 606–612.
Korotun A. V., Koval A. A., Opt. Spectrosc., 2019, 127, 1161–1168.
Korotun A. V., Pogosov V. V., Phys. Solid State, 2021, 63, 122–133.
Korotun A. V., Koval A. O., Pogosov V. V., Ukr. J. Phys., 2021, 66, 518–527.
Moroz A., J. Phys. Chem. C, 2008, 112, 10641–10649.
Rasskazov I. L., Moroz A., Carney P. S., J. Phys. Chem. Lett., 2021, 12, 6425–6431.
Norton S. J., Vo-Dinh T., Appl. Opt., 2016, 55, 2611–261.
Dahl J. P., Barnett M. P., Mol. Phys., 1965, 9, 175–178.
Caola M. J., J. Phys. A: Math. Gen., 1978, 11, L23–L25.
Downloads
Published
License
Copyright (c) 2025 A. Korotun, R. Korolkov, R. Malysh, R. Kulykovskyi

This work is licensed under a Creative Commons Attribution 4.0 International License.







