Absorption and scattering of light by metal-dielectric nanoeggs

Authors

DOI:

https://doi.org/10.5488/cmp.28.43702

Keywords:

surface plasmon resonance, nanoeggs, polarizability, absorption and scattering cross-sections, dielectric function, effective relaxation rate, radiation efficiency

Abstract

The optical and plasmonic properties of metal-dielectric nanoeggs were investigated in this study. Frequency dependencies of polarizability, absorption and scattering cross-sections, and radiation efficiency were determined. Expressions describing the size-dependent behavior of surface plasmon resonance frequencies were derived. The causes of blue and red shifts in the maxima of polarizability, absorption, and scattering cross-sections as well as variations in their number and amplitude were identified. Recommendations were proposed regarding the use of materials with maximum radiation efficiency in different spectral ranges.

References

Maier S. A., Kik P. G., Atwater H. A., Meltzer S., Harel E., Koel B. E., Requicha A. A. G., Nat. Mater., 2003, 2, 229–232. DOI: https://doi.org/10.1038/nmat852

Hernández J. V., Noordam L. D., Robicheaux F. J., J. Phys. Chem. B, 2005, 109, 15808. DOI: https://doi.org/10.1021/jp0527352

Koenderink A. F., Polman A., Phys. Rev. B, 2006, 74, 033402. DOI: https://doi.org/10.1103/PhysRevB.74.033402

Maniuk M. S., Korotun A. V., Kurbatsky V. P., Low Temp. Phys., 2025, 51, 143,. DOI: https://doi.org/10.1063/10.0034659

Sönnichsen C., Franzl T., Wilk T., von Plessen G., Feldmann J., New J. Phys., 2002, 4, 93. DOI: https://doi.org/10.1088/1367-2630/4/1/393

Arbouet A., Christofilos D., Del Fatti N., Vallée F., Huntzinger J. R., Arnaud L., Billaud P., Broyer M., Phys. Rev. Lett., 2004, 93, 127401. DOI: https://doi.org/10.1103/PhysRevLett.93.127401

Lee S. J., Guan Z., Xu H., Moskovits M., J. Phys. Chem. C, 2007, 111, 17985–17988. DOI: https://doi.org/10.1021/jp077422g

Kelly K. L., Coronado E., Zhao L. L., Schatz G. C., J. Phys. Chem. B, 2003, 107, 668–677. DOI: https://doi.org/10.1021/jp026731y

Oshikane Y., Kataoka T., Okuda M., Hara S., Inoue H., Nakano M., Sci. Technol. Adv. Mater., 2007, 8, 181–185. DOI: https://doi.org/10.1016/j.stam.2007.02.013

Nithyananda K., de Coene Y., Nagaraja V. S., Ahadzadeh S., Van Landeghem M., Verbiest T., Deferme W., Nanoscale Adv., 2023, 5, 1750–1759. DOI: https://doi.org/10.1039/D2NA00753C

Lakowicz J. R., Fu Y., Laser Photonics Rev., 2009, 3, 221–232. DOI: https://doi.org/10.1002/lpor.200810035

Zielinska Z., Oldak L., Gorodkiewicz E., Talanta, 2025, 284, 127247. DOI: https://doi.org/10.1016/j.talanta.2024.127247

Aslan K., Lakowicz J. R., Geddes C., Curr. Opin. Chem. Biol., 2005, 9, 538–544. DOI: https://doi.org/10.1016/j.cbpa.2005.08.021

Laurent G., Félidj N., Aubard J., Lévi G., Krenn J. R., Hohenau A., Schider G., Leitner A., Aussenegg F. R., J. Chem. Phys., 2005, 122, 011102. DOI: https://doi.org/10.1063/1.1845411

Eustis S., El-Sayed M. A., Chem. Soc. Rev., 2006, 35, 209–217. DOI: https://doi.org/10.1039/B514191E

Grady N. K., Halas N. J., Nordlander P., Chem. Phys. Lett., 2004, 399, 167–171. DOI: https://doi.org/10.1016/j.cplett.2004.09.154

Sosa I. O., Noguez C., Barrera R. G., J. Phys. Chem. B, 2003, 107, 6269–6275. DOI: https://doi.org/10.1021/jp0274076

Grabar K. C., Freeman R. G., Hommer M. B., Natan M. J., Anal. Chem., 1995, 67, 735–743. DOI: https://doi.org/10.1021/ac00100a008

Hulteen J. C., Van Duyne R. P., J. Vac. Sci. Technol., A, 1995, 13, 1553–1558. DOI: https://doi.org/10.1116/1.579726

Bastys V., Pastoriza-Santos I., Rodríguez-González B., Vaisnoras R., Liz-Marzán L. M., Adv. Funct. Mater., 2006, 16, 766–773. DOI: https://doi.org/10.1002/adfm.200500667

Nikoobakht B., El-Sayed M. A., Chem. Mater., 2003, 15, 1957–1962. DOI: https://doi.org/10.1021/cm020732l

Sun Y. G., Xia Y. N., Science, 2002, 298, 2176–2179. DOI: https://doi.org/10.1126/science.1077229

Oldenburg S. J., Averitt R. D., Westcott S. L., Halas N. J., Chem. Phys. Lett., 1998, 288, 243–247. DOI: https://doi.org/10.1016/S0009-2614(98)00277-2

Jackson J. B., Halas N. J., J. Phys. Chem. B, 2001, 105, 2743–2746. DOI: https://doi.org/10.1021/jp003868k

Sun Y., Mayers B., Xia Y., Adv. Mater., 2003, 15, 641–645. DOI: https://doi.org/10.1016/S0953-5438(03)00056-0

Wang H., Brandl D.W., Le F., Nordlander P., Halas N. J., Nano Lett., 2006, 6, 827–832. DOI: https://doi.org/10.1021/nl060209w

Koval A. O., Korotun A. V., Kunytskyi Yu. A., Tatarenko V. A., Titov I. M., Electrodynamics of Plasmon Effects in Nanomaterials, Naukova Dumka, Kyiv, 2021, (in Ukrainian).

Landes C. F., Link S., Mohamed M. B., Nikoobakht B., El-Sayed M. A., Pure Appl. Chem., 2002, 74, 1675–1692. DOI: https://doi.org/10.1351/pac200274091675

McLellan J. M., Li Z., Siekkinen A. R., Xia Y., Nano Lett., 2007, 7, 1013–1017. DOI: https://doi.org/10.1021/nl070157q

Korotun A. V., Karandas Ya. V., Reva V. I., Ukr. J. Phys., 2022, 67, 849–856. DOI: https://doi.org/10.15407/ujpe67.12.849

Korotun A. V., Pavlishche N. I., Opt. Spectrosc., 2022, 130, 269–273. DOI: https://doi.org/10.1134/S0030400X22040075

Korotun A. V., Low Temp. Phys., 2025, 51, 133–142. DOI: https://doi.org/10.1063/10.0034658

Prodan E., Nordlander P., J. Chem. Phys., 2004, 120, 5444–5461. DOI: https://doi.org/10.1063/1.1647518

Korotun A. V., Koval’ A. A., Titov I. N., J. Appl. Spectrosc., 2020, 87, 240–245. DOI: https://doi.org/10.1007/s10812-020-00991-7

Wang Y., Zhang Y., Wang Y., Zhang F., Ren H., Gao R., Zhang K., Zhang F., Cui R., Zhao X., Appl. Surf. Sci., 2025, 685, 162071. DOI: https://doi.org/10.1016/j.apsusc.2024.162071

Hirsch L. R., Stafford R. J., Bankson J. A., Sershen S. R., Rivera B., Price R. E., Hazle J. D., Halas N. J., West J. L., Proc. Natl. Acad. Sci. U.S.A., 2003, 100, 13549–13554. DOI: https://doi.org/10.1073/pnas.2232479100

Herzog J. B., Knight M. W., Natelson D., Nano Lett., 2014, 14, 499–503. DOI: https://doi.org/10.1021/nl403510u

Fu E. G., Caro M., Zepeda-Ruiz L. A., Wang Y. Q., Baldwin K., Bringa E., Nastasi M., Caro A., Appl. Phys. Lett., 2012, 101, 191607. DOI: https://doi.org/10.1063/1.4764528

González-Rubio G., González-Izquierdo J., Bañares L., Tardajos G., Rivera A., Altantzis T., Bals S., Peña-Rodríguez O., Guerrero-Martínez A., Liz-Marzán L. M., Nano Lett., 2015, 15, 8282–8288. DOI: https://doi.org/10.1021/acs.nanolett.5b03844

Wei H., Xu H., Nanoscale, 2013, 5, 10794–10801. DOI: https://doi.org/10.1039/c3nr02924g

Wu Y., Nordlander P., J. Chem. Phys., 2006, 125, 124708. DOI: https://doi.org/10.1063/1.2352750

Moradi A., Opt. Commun., 2009, 282, 3368–3370. DOI: https://doi.org/10.1016/j.optcom.2009.05.016

Moradi A., J. Chem. Phys., 2014, 141, 124121. DOI: https://doi.org/10.1063/1.4896370

Qian J., Sun Y.-D., Li Y.-D. Xu J.-J., Sunet Q., Nanoscale Res. Lett., 2015, 10, 17. DOI: https://doi.org/10.1186/s11671-015-0728-3

Cho W. J., Jung A., Han S., Lee S.-M., Kang T., Lee K.-H., Choi K. C., Kim J. K., NPG Asia Mater., 2015, 7, e167. DOI: https://doi.org/10.1038/am.2015.15

Lombardi A., Grzelczak M. P., Crut A., Maioli P., Pastoriza-Santos I., Liz-Marzán L. M., Del Fatti N., Vallée F., ACS Nano, 2013, 7, 2522–2531. DOI: https://doi.org/10.1021/nn305865h

Korotun A. V., Koval A. O., Reva V. I., J. Phys. Stud., 2019, 23, 2603. DOI: https://doi.org/10.30970/jps.23.2603

Korotun A. V., Koval’ A. A., Reva V. I., J. Appl. Spectrosc., 2019, 86, 606–612. DOI: https://doi.org/10.1007/s10812-019-00866-6

Korotun A. V., Koval A. A., Opt. Spectrosc., 2019, 127, 1161–1168. DOI: https://doi.org/10.1134/S0030400X19120117

Korotun A. V., Pogosov V. V., Phys. Solid State, 2021, 63, 122–133. DOI: https://doi.org/10.1134/S1063783421010133

Korotun A. V., Koval A. O., Pogosov V. V., Ukr. J. Phys., 2021, 66, 518–527. DOI: https://doi.org/10.15407/ujpe66.6.518

Moroz A., J. Phys. Chem. C, 2008, 112, 10641–10649. DOI: https://doi.org/10.1021/jp8010074

Rasskazov I. L., Moroz A., Carney P. S., J. Phys. Chem. Lett., 2021, 12, 6425–6431. DOI: https://doi.org/10.1021/acs.jpclett.1c01368

Norton S. J., Vo-Dinh T., Appl. Opt., 2016, 55, 2611–261. DOI: https://doi.org/10.1364/AO.55.002611

Dahl J. P., Barnett M. P., Mol. Phys., 1965, 9, 175–178. DOI: https://doi.org/10.1080/00268976500100201

Caola M. J., J. Phys. A: Math. Gen., 1978, 11, L23–L25. DOI: https://doi.org/10.1088/0305-4470/11/2/001

Published

2025-12-22

Issue

Section

Articles

Categories

How to Cite

[1]
A. Korotun, R. Korolkov, R. Malysh, and R. Kulykovskyi, “Absorption and scattering of light by metal-dielectric nanoeggs”, Condens. Matter Phys., vol. 28, no. 4, p. 43702, Dec. 2025, doi: 10.5488/cmp.28.43702.

Similar Articles

1-10 of 82

You may also start an advanced similarity search for this article.