Absorption and scattering of light by metal-dielectric nanoeggs
DOI:
https://doi.org/10.5488/cmp.28.43702Keywords:
surface plasmon resonance, nanoeggs, polarizability, absorption and scattering cross-sections, dielectric function, effective relaxation rate, radiation efficiencyAbstract
The optical and plasmonic properties of metal-dielectric nanoeggs were investigated in this study. Frequency dependencies of polarizability, absorption and scattering cross-sections, and radiation efficiency were determined. Expressions describing the size-dependent behavior of surface plasmon resonance frequencies were derived. The causes of blue and red shifts in the maxima of polarizability, absorption, and scattering cross-sections as well as variations in their number and amplitude were identified. Recommendations were proposed regarding the use of materials with maximum radiation efficiency in different spectral ranges.
References
Maier S. A., Kik P. G., Atwater H. A., Meltzer S., Harel E., Koel B. E., Requicha A. A. G., Nat. Mater., 2003, 2, 229–232. DOI: https://doi.org/10.1038/nmat852
Hernández J. V., Noordam L. D., Robicheaux F. J., J. Phys. Chem. B, 2005, 109, 15808. DOI: https://doi.org/10.1021/jp0527352
Koenderink A. F., Polman A., Phys. Rev. B, 2006, 74, 033402. DOI: https://doi.org/10.1103/PhysRevB.74.033402
Maniuk M. S., Korotun A. V., Kurbatsky V. P., Low Temp. Phys., 2025, 51, 143,. DOI: https://doi.org/10.1063/10.0034659
Sönnichsen C., Franzl T., Wilk T., von Plessen G., Feldmann J., New J. Phys., 2002, 4, 93. DOI: https://doi.org/10.1088/1367-2630/4/1/393
Arbouet A., Christofilos D., Del Fatti N., Vallée F., Huntzinger J. R., Arnaud L., Billaud P., Broyer M., Phys. Rev. Lett., 2004, 93, 127401. DOI: https://doi.org/10.1103/PhysRevLett.93.127401
Lee S. J., Guan Z., Xu H., Moskovits M., J. Phys. Chem. C, 2007, 111, 17985–17988. DOI: https://doi.org/10.1021/jp077422g
Kelly K. L., Coronado E., Zhao L. L., Schatz G. C., J. Phys. Chem. B, 2003, 107, 668–677. DOI: https://doi.org/10.1021/jp026731y
Oshikane Y., Kataoka T., Okuda M., Hara S., Inoue H., Nakano M., Sci. Technol. Adv. Mater., 2007, 8, 181–185. DOI: https://doi.org/10.1016/j.stam.2007.02.013
Nithyananda K., de Coene Y., Nagaraja V. S., Ahadzadeh S., Van Landeghem M., Verbiest T., Deferme W., Nanoscale Adv., 2023, 5, 1750–1759. DOI: https://doi.org/10.1039/D2NA00753C
Lakowicz J. R., Fu Y., Laser Photonics Rev., 2009, 3, 221–232. DOI: https://doi.org/10.1002/lpor.200810035
Zielinska Z., Oldak L., Gorodkiewicz E., Talanta, 2025, 284, 127247. DOI: https://doi.org/10.1016/j.talanta.2024.127247
Aslan K., Lakowicz J. R., Geddes C., Curr. Opin. Chem. Biol., 2005, 9, 538–544. DOI: https://doi.org/10.1016/j.cbpa.2005.08.021
Laurent G., Félidj N., Aubard J., Lévi G., Krenn J. R., Hohenau A., Schider G., Leitner A., Aussenegg F. R., J. Chem. Phys., 2005, 122, 011102. DOI: https://doi.org/10.1063/1.1845411
Eustis S., El-Sayed M. A., Chem. Soc. Rev., 2006, 35, 209–217. DOI: https://doi.org/10.1039/B514191E
Grady N. K., Halas N. J., Nordlander P., Chem. Phys. Lett., 2004, 399, 167–171. DOI: https://doi.org/10.1016/j.cplett.2004.09.154
Sosa I. O., Noguez C., Barrera R. G., J. Phys. Chem. B, 2003, 107, 6269–6275. DOI: https://doi.org/10.1021/jp0274076
Grabar K. C., Freeman R. G., Hommer M. B., Natan M. J., Anal. Chem., 1995, 67, 735–743. DOI: https://doi.org/10.1021/ac00100a008
Hulteen J. C., Van Duyne R. P., J. Vac. Sci. Technol., A, 1995, 13, 1553–1558. DOI: https://doi.org/10.1116/1.579726
Bastys V., Pastoriza-Santos I., Rodríguez-González B., Vaisnoras R., Liz-Marzán L. M., Adv. Funct. Mater., 2006, 16, 766–773. DOI: https://doi.org/10.1002/adfm.200500667
Nikoobakht B., El-Sayed M. A., Chem. Mater., 2003, 15, 1957–1962. DOI: https://doi.org/10.1021/cm020732l
Sun Y. G., Xia Y. N., Science, 2002, 298, 2176–2179. DOI: https://doi.org/10.1126/science.1077229
Oldenburg S. J., Averitt R. D., Westcott S. L., Halas N. J., Chem. Phys. Lett., 1998, 288, 243–247. DOI: https://doi.org/10.1016/S0009-2614(98)00277-2
Jackson J. B., Halas N. J., J. Phys. Chem. B, 2001, 105, 2743–2746. DOI: https://doi.org/10.1021/jp003868k
Sun Y., Mayers B., Xia Y., Adv. Mater., 2003, 15, 641–645. DOI: https://doi.org/10.1016/S0953-5438(03)00056-0
Wang H., Brandl D.W., Le F., Nordlander P., Halas N. J., Nano Lett., 2006, 6, 827–832. DOI: https://doi.org/10.1021/nl060209w
Koval A. O., Korotun A. V., Kunytskyi Yu. A., Tatarenko V. A., Titov I. M., Electrodynamics of Plasmon Effects in Nanomaterials, Naukova Dumka, Kyiv, 2021, (in Ukrainian).
Landes C. F., Link S., Mohamed M. B., Nikoobakht B., El-Sayed M. A., Pure Appl. Chem., 2002, 74, 1675–1692. DOI: https://doi.org/10.1351/pac200274091675
McLellan J. M., Li Z., Siekkinen A. R., Xia Y., Nano Lett., 2007, 7, 1013–1017. DOI: https://doi.org/10.1021/nl070157q
Korotun A. V., Karandas Ya. V., Reva V. I., Ukr. J. Phys., 2022, 67, 849–856. DOI: https://doi.org/10.15407/ujpe67.12.849
Korotun A. V., Pavlishche N. I., Opt. Spectrosc., 2022, 130, 269–273. DOI: https://doi.org/10.1134/S0030400X22040075
Korotun A. V., Low Temp. Phys., 2025, 51, 133–142. DOI: https://doi.org/10.1063/10.0034658
Prodan E., Nordlander P., J. Chem. Phys., 2004, 120, 5444–5461. DOI: https://doi.org/10.1063/1.1647518
Korotun A. V., Koval’ A. A., Titov I. N., J. Appl. Spectrosc., 2020, 87, 240–245. DOI: https://doi.org/10.1007/s10812-020-00991-7
Wang Y., Zhang Y., Wang Y., Zhang F., Ren H., Gao R., Zhang K., Zhang F., Cui R., Zhao X., Appl. Surf. Sci., 2025, 685, 162071. DOI: https://doi.org/10.1016/j.apsusc.2024.162071
Hirsch L. R., Stafford R. J., Bankson J. A., Sershen S. R., Rivera B., Price R. E., Hazle J. D., Halas N. J., West J. L., Proc. Natl. Acad. Sci. U.S.A., 2003, 100, 13549–13554. DOI: https://doi.org/10.1073/pnas.2232479100
Herzog J. B., Knight M. W., Natelson D., Nano Lett., 2014, 14, 499–503. DOI: https://doi.org/10.1021/nl403510u
Fu E. G., Caro M., Zepeda-Ruiz L. A., Wang Y. Q., Baldwin K., Bringa E., Nastasi M., Caro A., Appl. Phys. Lett., 2012, 101, 191607. DOI: https://doi.org/10.1063/1.4764528
González-Rubio G., González-Izquierdo J., Bañares L., Tardajos G., Rivera A., Altantzis T., Bals S., Peña-Rodríguez O., Guerrero-Martínez A., Liz-Marzán L. M., Nano Lett., 2015, 15, 8282–8288. DOI: https://doi.org/10.1021/acs.nanolett.5b03844
Wei H., Xu H., Nanoscale, 2013, 5, 10794–10801. DOI: https://doi.org/10.1039/c3nr02924g
Wu Y., Nordlander P., J. Chem. Phys., 2006, 125, 124708. DOI: https://doi.org/10.1063/1.2352750
Moradi A., Opt. Commun., 2009, 282, 3368–3370. DOI: https://doi.org/10.1016/j.optcom.2009.05.016
Moradi A., J. Chem. Phys., 2014, 141, 124121. DOI: https://doi.org/10.1063/1.4896370
Qian J., Sun Y.-D., Li Y.-D. Xu J.-J., Sunet Q., Nanoscale Res. Lett., 2015, 10, 17. DOI: https://doi.org/10.1186/s11671-015-0728-3
Cho W. J., Jung A., Han S., Lee S.-M., Kang T., Lee K.-H., Choi K. C., Kim J. K., NPG Asia Mater., 2015, 7, e167. DOI: https://doi.org/10.1038/am.2015.15
Lombardi A., Grzelczak M. P., Crut A., Maioli P., Pastoriza-Santos I., Liz-Marzán L. M., Del Fatti N., Vallée F., ACS Nano, 2013, 7, 2522–2531. DOI: https://doi.org/10.1021/nn305865h
Korotun A. V., Koval A. O., Reva V. I., J. Phys. Stud., 2019, 23, 2603. DOI: https://doi.org/10.30970/jps.23.2603
Korotun A. V., Koval’ A. A., Reva V. I., J. Appl. Spectrosc., 2019, 86, 606–612. DOI: https://doi.org/10.1007/s10812-019-00866-6
Korotun A. V., Koval A. A., Opt. Spectrosc., 2019, 127, 1161–1168. DOI: https://doi.org/10.1134/S0030400X19120117
Korotun A. V., Pogosov V. V., Phys. Solid State, 2021, 63, 122–133. DOI: https://doi.org/10.1134/S1063783421010133
Korotun A. V., Koval A. O., Pogosov V. V., Ukr. J. Phys., 2021, 66, 518–527. DOI: https://doi.org/10.15407/ujpe66.6.518
Moroz A., J. Phys. Chem. C, 2008, 112, 10641–10649. DOI: https://doi.org/10.1021/jp8010074
Rasskazov I. L., Moroz A., Carney P. S., J. Phys. Chem. Lett., 2021, 12, 6425–6431. DOI: https://doi.org/10.1021/acs.jpclett.1c01368
Norton S. J., Vo-Dinh T., Appl. Opt., 2016, 55, 2611–261. DOI: https://doi.org/10.1364/AO.55.002611
Dahl J. P., Barnett M. P., Mol. Phys., 1965, 9, 175–178. DOI: https://doi.org/10.1080/00268976500100201
Caola M. J., J. Phys. A: Math. Gen., 1978, 11, L23–L25. DOI: https://doi.org/10.1088/0305-4470/11/2/001
Downloads
Published
License
Copyright (c) 2025 A. Korotun, R. Korolkov, R. Malysh, R. Kulykovskyi

This work is licensed under a Creative Commons Attribution 4.0 International License.







