Ab initio study of mechanical and functional properties of novel CaZnC and CaZnSi half-Heusler materials

Authors

DOI:

https://doi.org/10.5488/cmp.28.43706

Keywords:

optical properties, structural stability, thermodynamic stability, half-Heusler, thermoelectric materials

Abstract

This research work introduces the DFT through FP-LAPW+lo technique in WIEN2k software to obtain information about structural, thermoelectric, and optoelectronic characteristics of CaZnC and CaZnSi materials. The structural optimization was performed using PBE-GGA functional, while the rest of the characteristics were obtained with the PBE-GGA + TB-mBJ approach. The thermoelectric parameters were evaluated using BoltzTraP software. The elastic constants and other mechanical parameters were computed by utilizing the ELAST code within the WIEN2k software, while the thermodynamic characteristics were evaluated using the Gibbs2 program. The findings show a correlation between atomic composition and lattice dimensions while finding that CaZnC has a direct (Γ–Γ) band gap of 1.186 eV, whereas CaZnSi has an indirect (Γ–X) band gap of 1.067 eV. The optical studies of the compounds show potential applications for photovoltaics while the thermoelectric results find optimized power factors and figure of merit values for energy conversion performance. The elastic parameters of CaZnC and CaZnSi demonstrate material stability and brittleness. Lastly, the thermodynamic evaluations provide information about the thermal mechanism and disorder of the materials. As a result, this research work provides significant advancements in the understanding of the fundamentals of these compounds and highlights their promising applications in renewable energy technologies.

References

Nazir A., Khera E. A., Manzoor M., Al-Asbahi B. A., Sharma R., Mater. Sci. Eng., B, 2024, 303, 117338.

Kumari S., Bairwa J. K., Radius: J. Sci. Technol., 2024, 1, 241002.

Rani M., Kamlesh P. K., Kumawat S., Rani U., Arora G., Verma A. S., Physica B, 2024, 680, 415645.

Rolania M. C., Kamlesh P. K., Kumar P., Sharma G., Verma A. S., Mod. Phys. Lett. B, 2024, 39, 2550081.

Pandit N., Singh R., Joshi T. K., Shukla A., Kamlesh P. K., Dubey A., Verma A. S., J. Comput. Electron., 2025, 24, 1–19.

Meena A., Bairwa J. K., Kumari S., Rani U., Kamlesh P. K., Singh A. P., Verma A. S., Phys. Chem. Solids, 2025, 26, 10–22.

Bairwa J. K., Kumari S., Radius: J. Sci. Technol., 2024, 1, 241004.

Li Y., Huang X., Sheriff H. K., Forrest S. R., Nat. Rev. Mater., 2023, 8, 186–201.

Saini A., Lone U. F., Phys. Status Solidi B, 2024, 261, 2300244.

Menaria G. L., Rani U., Kamlesh P. K., Singh R., Rani M., Singh N., Verma A. S., Mod. Phys. Lett. B, 2024, 38, 2450283.

Zhao Y., Li X., Wu Q., Feng Y., Wu B., Mater. Sci. Semicond. Process., 2024, 178, 108415.

Huang Y., Lv F., Han S., Chen M., Wang Y., Lou Q., Zhu T., Science, 2025, 387, 1187–1192.

Goyal M., Sinha M. M., Phys. Status Solidi B, 2023, 260, 2200463.

Nikitin A. M., Pan Y., Mao X., Jehee R., Araizi G. K., Huang Y. K., De Visser A., J. Phys.: Condens. Matter, 2015, 27, 275701.

Sattar M. A., Javed M., Al Bouzieh N., Benkraouda M., Amrane N., Mater. Sci. Semicond. Process., 2023, 155, 107233.

Verma P., Singh C., Kamlesh P. K., Kaur K., Verma A. S., J. Mol. Model., 2023, 29, 23.

Zhu H., Li W., Nozariasbmarz A., Liu N., Zhang Y., Priya S., Poudel B., Nat. Commun., 2023, 14, 3300.

Kamlesh P. K., Gautam R., Kumari S., Verma A. S., Physica B, 2021, 615, 412536.

Heusler F., Verh. Dtsch. Phys. Ges., 1903, 5, 219.

Lin H., Wray L. A., Xia Y., Xu S., Jia S., Cava R. J., Hasan M. Z., Nat. Mater., 2010, 9, 546–549.

Liu J., Zhao Y., Dai Z., Ni J., Meng S., Comput. Mater. Sci., 2020, 185, 109960.

Gruhn T., Phys. Rev. B, 2010, 82, 125210.

Belmiloud N., Boutaiba F., Belabbes A., Ferhat M., Bechstedt F., Phys. Status Solidi B, 2016, 253, 889–894.

Azouaoui A., Harbi A., Moutaabbid M., Benzakour N., Hourmatallah A., Bouslykhane K., Chahboun A., Int. J. Mod. Phys. B, 2024, 38, 2450122.

Xiong J. L., Yu F., Liu J., Liu X. C., Liu Q., Liu K., Xia S. Q., ACS Appl. Energy Mater., 2022, 5, 3793–3799.

Wu H. Y., Chen Y. H., Yin P. F., Zhang Z. R., Han X. Y., Li X. Y., Philos. Mag. Lett., 2019, 99, 29–38.

Jin L., Zhang X., He T., Meng W., Dai X., Liu G., J. Mater. Chem. C, 2019, 7, 10694–10699.

Yi X., Li W. Q., Li Z. H., Zhou P., Ma Z. S., Sun L. Z., J. Mater. Chem. C, 2019, 7, 15375–15381.

Ciftci Y. O., In: Advances in Optoelectronic Materials, Ikhmayies S. J., Kurt H. H. (Eds.), Springer International Publishing, Cham, 2021, 125–144.

Wang X., Ding G., Cheng Z., Surucu G., Wang X. L., Yang T., J. Adv. Res., 2020, 23, 95–100.

Blaha P., Schwarz K., Tran F., Laskowski R., Madsen G. K., Marks L. D., J. Chem. Phys., 2020, 152.

Singh D. J., Nordstrom L., Planewaves, Pseudopotentials, and the LAPW Method, Springer, 2006.

Kohn W., Sham L. J., Phys. Rev., 1965, 140, A1133.

Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865.

Tran F., Blaha P., Phys. Rev. Lett., 2009, 102, 226401.

Madsen G. K., Singh D. J., Comput. Phys. Commun., 2006, 175, 67–71.

Otero-de-la-Roza A., Abbasi-Perez D., Luana V., Comput. Phys. Commun., 2011, 182, 2232–2248.

Kamlesh P. K., Agrawal R., Rani U., Verma A. S., Mater. Chem. Phys., 2022, 275, 125233.

Saim A., Belkharroubi F., Boufadi F. Z., Ameri I., Blaha L. F., Tebboune A., Abd El-Rehim A. F., J. Electron. Mater., 2022, 51, 4014–4028.

Rasul M. N., Hu T., Mehmood M., Andleeb F., Akbar M. S., Manzoor A., Hussain A., Mater. Sci. Semicond. Process., 2024, 172, 108024.

Srivastava S., Rani U., Rani M., Toual Y., Dubey A., Pandit N., Kamlesh P. K., Next Mater., 2025, 8, 100724.

Rani U., Kamlesh P. K., Shukla A., Verma A. S., J. Solid State Chem., 2021, 300, 122246.

Lantri T., Bentata S., Bouadjemi B., Benstaali W., Bouhafs B., Abbad A., Zitouni A., J. Magn. Magn. Mater., 2016, 419, 74–83.

Menaria G. L., Rani U., Kamlesh P. K., Rani M., Singh N., Sharma D. C., Verma A. S., Int. J. Mod. Phys. B, 2025, 39, 2550052.

Sharma S., Verma A. S., Jindal V. K., Mater. Res. Bull., 2014, 53, 218–233.

Kamlesh P. K., Kumari S., Verma A. S., Phys. Scr., 2020, 95, 095806.

Slack G. A., Solid State Phys., 1979, 34, 1–71.

Jia T., Chen G., Zhang Y., Phys. Rev. B, 2017, 95, 155206.

Nielsen M. D., Ozolins V., Heremans J. P., Energy Environ. Sci., 2013, 6, 570–578.

Schwall M., Balke B., Phys. Chem. Chem. Phys., 2013, 15, 1868–1872.

Chen S., Ren Z., Mater. Today, 2013, 16, 387–395.

Poon S. J., Metals, 2018, 8, 989.

Chen L., Gao S., Zeng X., Dehkordi A., Tritt T. M., Poon S. J., Appl. Phys. Lett., 2015, 107, 041902.

Jochym P. T., Parlinski K., Krzywiec P., Comput. Mater. Sci., 2004, 29, 414–418.

Wdowik U. D., Parlinski K., Siegel A., J. Phys. Chem. Solids, 2006, 67, 1477–1483.

Milman V., Winkler B., Probert M. I. J., J. Phys.: Condens. Matter, 2005, 17, 2233.

Karki B. B., Stixrude L., Clark S. J., Warren M. C., Ackland G. J., Crain J., Am. Mineral., 1997, 82, 51–60.

Voigt W., Ann. Phys. Chem., 1889, 274, 573–587.

Reuss A., ZAMM, 1929, 9, 49–58.

Hill R., Proc. Phys. Soc. A, 1952, 65, 349–354.

Pugh S. F., Philos. Mag., 1954, 45, 823–843.

Liu Y., Hu W. C., Li D. J., Zeng X. Q., Xu C. S., Yang X. J., Intermetallics, 2012, 31, 257–263.

Pettifor D. G., Mater. Sci. Technol., 1992, 8, 345–349.

Pokluda J., Cerny M., Sob M., Umeno Y., Prog. Mater. Sci., 2015, 73, 127–158.

Kleinman L., Phys. Rev., 1962, 128, 2614–2621.

Han Y., Wu Y., Li T., Khenata R., Yang T., Wang X., Materials, 2018, 11, 797.

Pathak A. K., Vazhappilly T., Phys. Status Solidi B, 2018, 255, 1700668.

Mayer B., Anton H., Bott E., Methfessel M., Sticht J., Harris J., Schmidt P. C., Intermetallics, 2003, 11, 23–32.

Mahmood Q., Yaseen M., Hassan M., Rashid M. S., Tlili I., Laref A., Mater. Res. Express, 2019, 6, 045901.

Kuma S., Woldemariam M. M., Adv. Condens. Matter Phys., 2019.

Sun Z., Li S., Ahuja R., Schneider J. M., Solid State Commun., 2004, 129, 589–592.

Francisco E., Blanco M. A., Sanjurjo G., Phys. Rev. B, 2001, 63, 094107.

Singh P., Sharma S., Kumari S., Saraswat V. K., Sharma D., Verma A. S., Semiconductors, 2017, 51, 679–687.

Peng X. C., Xing L. L., Fang Z. H., Physica B, 2007, 394, 111–114.

Bairwa J. K., Kamlesh P. K., Rani U., Singh R., Gupta R., Kumari S., Verma A. S., Mater. Sci. Energy Technol., 2024, 7, 61–72.

Bennani M. A., Aziz Z., Terkhi S., Elandaloussi E. H., Bouadjemi B., Chenine D., Bentata S., J. Supercond. Novel Magn., 2021, 34, 211–225.

Published

2025-12-22

How to Cite

[1]
P. K. Kamlesh, U. K. Gupta, S. Verma, M. Rani, Y. Toual, and A. S. Verma, “Ab initio study of mechanical and functional properties of novel CaZnC and CaZnSi half-Heusler materials”, Condens. Matter Phys., vol. 28, no. 4, p. 43706, Dec. 2025, doi: 10.5488/cmp.28.43706.

Similar Articles

31-40 of 81

You may also start an advanced similarity search for this article.