Universal properties of branched copolymers in dilute solutions
DOI:
https://doi.org/10.5488/cmp.27.13301Keywords:
polymers, scaling, universal properties, renormalization group, numerical simulationsAbstract
We analyze the universal conformational properties of complex copolymer macromolecules, based on two topologies: the rosette structure containing fc linear branches and fr closed loops grafted to the central core, and the symmetric pom-pom structure, consisting of a backbone linear chain terminated by two branching points with functionalities f. We assume that the constituent strands (branches) of these structures can be of two different chemical species a and b. Depending on the solvent conditions, the inter- or intrachain interactions of some links may vanish, which corresponds to Θ-state of the corresponding polymer species. Applying both the analytical approach within the frames of direct polymer renormalization and numerical simulations based on the lattice model of polymer, we evaluated the set of parameters characterizing the size properties of constituent parts of two complex topologies and estimated quantitatively the impact of interactions between constituent parts on these size characteristics.
References
Gao C., Yan D., Prog. Polym. Sci., 2004, 29, 183–275, https://doi.org/10.1016/j.progpolymsci.2003.12.002. DOI: https://doi.org/10.1016/j.progpolymsci.2003.12.002
Yates C. R., Hayes W., Eur. Polym. J., 2004, 40, 1257–1281, https://doi.org/10.1016/j.eurpolymj.2004.02.007. DOI: https://doi.org/10.1016/j.eurpolymj.2004.02.007
Voit B. I., Lederer A., Chem. Rev., 2009, 109, 5924–5973, https://doi.org/10.1021/cr900068q. DOI: https://doi.org/10.1021/cr900068q
Wang D., Zhao T., Zhu X., Yan D.,WangW., Chem. Soc. Rev., 2015, 44, 4023–4071, https://doi.org/10.1039/C4CS00229F. DOI: https://doi.org/10.1039/C4CS00229F
Cook A. B., Perrier S., Adv. Funct. Mater., 2020, 30, 1901001, https://doi.org/10.1002/adfm.201901001. DOI: https://doi.org/10.1002/adfm.201901001
Schubert C., Osterwinter C., Tonhauser C., Schömer M., Wilms D., Frey H., Friedrich C., Macromolecules, 2016, 49, 8722–8737, https://doi.org/10.1021/acs.macromol.6b00674. DOI: https://doi.org/10.1021/acs.macromol.6b00674
Khabaz F., Khare R., J. Chem. Phys., 2014, 141, 214904, https://doi.org/10.1063/1.4902052. DOI: https://doi.org/10.1063/1.4902052
Knauss D. M., Huang T., Macromolecules, 2002, 35, 2055–2062, https://doi.org/10.1021/ma010949l. DOI: https://doi.org/10.1021/ma010949l
Warner J. J., Wang P., Mellor W. M., Hwang H. H., Park J. H., Pyo S. H., Chen S., Polym. Chem., 2019, 10, 4665–4674, https://doi.org/10.1039/C9PY00999J. DOI: https://doi.org/10.1039/C9PY00999J
Zimm B. H., Stockmayer W. H., J. Chem. Phys., 1949, 17, 1301–1314, https://doi.org/10.1063/1.1747157. DOI: https://doi.org/10.1063/1.1747157
Kalyuzhnyi O., Haidukivska K., Blavatska V., Ilnytskyi J., Macromol. Theory Simul., 2019, 28, 1900012, https://doi.org/10.1002/mats.201900012. DOI: https://doi.org/10.1002/mats.201900012
Ilnytskyi J., Patsahan T., Holovko M., Krouskop P. E., Makowski M. P., Macromolecules, 2008, 41, 9904–9913, https://doi.org/10.1021/ma801045z. DOI: https://doi.org/10.1021/ma801045z
Kalyuzhnyi O., Ilnytskyi J., Holovatch Yu., von Ferber C., J. Phys.: Condens. Matter, 2018, 30, 215101, https://doi.org/10.1088/1361-648X/aabc16. DOI: https://doi.org/10.1088/1361-648X/aabc16
Blavatska V., Metzler R., J. Phys. A: Math. Theor., 2015, 48, 135001, https://doi.org/10.1088/1751-8113/48/13/135001. DOI: https://doi.org/10.1088/1751-8113/48/13/135001
Haydukivska K., Blavatska V., Phys. Rev. E, 2018, 97, 032502, https://doi.org/10.1103/PhysRevE.97.032502. DOI: https://doi.org/10.1103/PhysRevE.97.032502
Haydukivska K., Blavatska V., Paturej J., Sci. Rep., 2020, 10, 14127, https://doi.org/10.1038/s41598-020-70649-z. DOI: https://doi.org/10.1038/s41598-020-70649-z
Bishko G., McLeish T. C. B., Harlen O. G., Larson R. G., Phys. Rev. Lett., 1997, 79, 2352–2355, https://doi.org/10.1103/PhysRevLett.79.2352. DOI: https://doi.org/10.1103/PhysRevLett.79.2352
McLeish T. C. B., Larson R. G., J. Rheol., 1998, 42, 81–110, https://doi.org/10.1122/1.550933. DOI: https://doi.org/10.1122/1.550933
Haydukivska K., Kalyuzhnyi O., Blavatska V., Ilnytskyi J., J. Mol. Liq., 2021, 328, 115456, https://doi.org/10.1016/j.molliq.2021.115456. DOI: https://doi.org/10.1016/j.molliq.2021.115456
Haydukivska K., Kalyuzhnyi O., Blavatska V., Ilnytskyi J., Condens. Matter Phys., 2022, 25, 23302, https://doi.org/10.5488/CMP.25.23302. DOI: https://doi.org/10.5488/CMP.25.23302
Haydukivska K., Blavatska V., Condens. Matter Phys., 2023, 26, 23301, https://doi.org/10.5488/CMP.26.23301. DOI: https://doi.org/10.5488/CMP.26.23301
Mathur V., Satrawala Y., Rajput M. S., Inventi Impact: NDDS, 2010, 1, 1–4. DOI: https://doi.org/10.4103/0973-8398.72115
Ilnytskyi J., Lintuvuori J. S.,Wilson M. R., Condens. Matter Phys., 2010, 13, 33001, https://doi.org/10.5488/CMP.13.33001. DOI: https://doi.org/10.5488/CMP.13.33001
Singh A. N., Thakre R. D., More J. C., Sharma P. K., Agrawal Y. K., Polym.-Plast. Technol. Eng., 2015, 54, 1077–1095, https://doi.org/10.1080/03602559.2014.986811. DOI: https://doi.org/10.1080/03602559.2014.986811
Brendel J. C., Schacher F. H., Chem. – Asian J., 2018, 13, 230–239, https://doi.org/10.1002/asia.201701542. DOI: https://doi.org/10.1002/asia.201701542
Oss-Ronen L., Schmidt J.,AbetzV., Radulescu A., CohenY., TalmonY., Macromolecules, 2012, 45, 9631–9642, https://doi.org/10.1021/ma301611c. DOI: https://doi.org/10.1021/ma301611c
Meng F., Zhong Z., Feijen J., Biomacromolecules, 2009, 10, 197–209, https://doi.org/10.1021/bm801127d. DOI: https://doi.org/10.1021/bm801127d
Mann J. L., Grosskopf A. K., Smith A. A. A., Appel E. A., Biomacromolecules, 2021, 22, 86–94, https://doi.org/10.1021/acs.biomac.0c00539. DOI: https://doi.org/10.1021/acs.biomac.0c00539
Lin Q., Ow V., Boo Y. J., Teo V. T. A., Wong J. H. M., Tan R. P. T., Xue K., Lim J. Y. C., Loh X. J., Front. Bioeng. Biotechnol., 2022, 10, 864372, https://doi.org//10.3389/fbioe.2022.864372. DOI: https://doi.org/10.3389/fbioe.2022.864372
Hadjichristidis N., Pispas S., Floudas G., Block Copolymers: Synthetic Strategies, Physical Properties, and Applications, John Wiley & Sons, Inc., New Jersey, 2003. DOI: https://doi.org/10.1002/0471269808
Matsen M. W., Bates F. S., Macromolecules, 1996, 29, 7641– 7644, https://doi.org/10.1021/ma960744q. DOI: https://doi.org/10.1021/ma960744q
Mai Y., Eisenberg A., Chem. Soc. Rev., 2012, 41, 5969–5985, https://doi.org/10.1039/C2CS35115C. DOI: https://doi.org/10.1039/c2cs35115c
Jackson E. A., Hillmyer M. A., ACS Nano, 2010, 4, 3548–3553, https://doi.org/10.1021/nn1014006. DOI: https://doi.org/10.1021/nn1014006
Bates F. S., Fredrickson G. H., Hucul D., Hahn S. F., AIChE J., 2001, 47, 762–765, https://doi.org/10.1002/aic.690470402. DOI: https://doi.org/10.1002/aic.690470402
Burchard W., In: Branched Polymers II, Advances in Polymer Science, Vol. 143, Roovers J. (Ed.), Springer, Berlin, Heidelberg, 1999, 113–194, https://doi.org/10.1007/3-540-49780-3_3. DOI: https://doi.org/10.1007/3-540-49780-3_3
de Gennes P. G., Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, 1979.
des Cloizeaux J., Jannink G., Polymers in Solutions: Their Modelling and Structure, Clarendon Press, Oxford, 1990. DOI: https://doi.org/10.1093/oso/9780198520368.001.0001
Clisby N., Dünweg B., Phys. Rev. E, 2016, 94, 052102, https://doi.org/10.1103/PhysRevE.94.052102. DOI: https://doi.org/10.1103/PhysRevE.94.052102
Duplantier B., J. Chem. Phys., 1987, 86, 4233–4244, https://doi.org/10.1063/1.451884. DOI: https://doi.org/10.1063/1.451884
Joanny J. F., Leibler L., Ball R., J. Chem. Phys., 1984, 81, 4640–4655, https://doi.org/10.1063/1.447399. DOI: https://doi.org/10.1063/1.447399
Douglas J. F., Fried K. F., J. Chem. Phys., 1987, 86, 4280–4293, https://doi.org/10.1063/1.451888. DOI: https://doi.org/10.1063/1.451888
Vlahos C. H., Horta A., Molina L. A., Freire J. J., Macromolecules, 1994, 27, 2726–2731, https://doi.org/10.1021/ma00088a012. DOI: https://doi.org/10.1021/ma00088a012
Olaj O. F., Neubauer B., Ziferer G., Macromol. Theory Simul., 1998, 7, 181–188, https://doi.org/10.1002/(SICI)1521-3919(19980101)7:1<181::AID-MATS181>3.0.CO;2-Q. DOI: https://doi.org/10.1002/(SICI)1521-3919(19980101)7:1<181::AID-MATS181>3.0.CO;2-Q
Molina L. A., Rodriguez A. L., Freire J. J., Macromolecules, 1994, 27, 1160–1165, https://doi.org/10.1021/ma00083a013. DOI: https://doi.org/10.1021/ma00083a013
McMullenW. E., Freed K. F., Cherayil B. J., Macromolecules, 1989, 22, 1853–1862, https://doi.org/10.1021/ma00194a057. DOI: https://doi.org/10.1021/ma00194a057
Binder K., Müller M., Curr. Opin. Colloid Interface Sci., 2000, 5, 314–322, https://doi.org/10.1016/S1359-0294(00)00074-1. DOI: https://doi.org/10.1016/S1359-0294(00)00074-1
Vlahos C., Hadjichristidis N., Kosmas M. K., Rubio A. M., Freire J. J., Macromolecules, 1995, 28, 6854–6859, https://doi.org/10.1021/ma00124a021. DOI: https://doi.org/10.1021/ma00124a021
Rubio A. M., Brea P., Freire J. J., Vlahos C., Macromolecules, 2000, 33, 207–216, https://doi.org/10.1021/ma9913156. DOI: https://doi.org/10.1021/ma9913156
Zifferer G., Eggerstorfer D., Macromol. Theory Simul., 2010, 19, 458–482, https://doi.org/10.1002/mats.201000027. DOI: https://doi.org/10.1002/mats.201000027
Edwards S. F., Proc. Phys. Soc., London, 1965, 85, 613–624, https://doi.org/10.1088/0370-1328/85/4/301. DOI: https://doi.org/10.1088/0370-1328/85/4/301
Haydukivska K., Blavatska V., J. Phys. A: Math. Theor., 2019, 52, 505004, https://doi.org/10.1088/1751-8121/ab2660. DOI: https://doi.org/10.1088/1751-8121/ab2660
Vlahos C. H., Horta A., Freire J. J., Macromolecules, 1992, 25, 5974–5980, https://doi.org/10.1021/ma00048a018. DOI: https://doi.org/10.1021/ma00048a018
Clisby N., Phys. Rev. Lett., 2010, 104, 055702, https://doi.org/10.1103/PhysRevLett.104.055702. DOI: https://doi.org/10.1103/PhysRevLett.104.055702
Madras N., Sokal A. D., J. Stat. Phys., 1988, 50, 109–186, https://doi.org/10.1007/BF01022990. DOI: https://doi.org/10.1007/BF01022990
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 K. Haydukivska, V. Blavatska
This work is licensed under a Creative Commons Attribution 4.0 International License.