Finite size effects and optimization of the calculation of the surface tension in surfactant mixtures at liquid/vapour interfaces

Authors

  • C. J. Guzman-Valencia Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, UNAM Cd. Mx. 04510, México
  • J. Toriz-Salinas Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, UNAM Cd. Mx. 04510, México
  • H. Espinosa-Jimenez Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, UNAM Cd. Mx. 04510, México
  • A. B. Salazar-Arriaga Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, UNAM Cd. Mx. 04510, México
  • J. L. López-Cervantes Facultad de Química, Universidad Nacional Autónoma de México, UNAM Cd. Mx. 04510, México
  • H. Dominguez Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, UNAM Cd. Mx. 04510, México https://orcid.org/0000-0001-6126-9300

DOI:

https://doi.org/10.5488/cmp.27.13605

Keywords:

finite size effects, molecular dynamics, surface tension, surfactant monolayer mixtures, water/air

Abstract

The surface tension of monolayers with mixtures of anionic and nonionic surfactant at the liquid/vapour interface is studied. Previous works have observed that calculations of the surface tension of simple fluids show artificial oscillations for small interfacial areas, indicating that the surface tension data fluctuate due to the finite size effects and periodic boundary conditions. In the case of simulations of monolayers composed of surfactant mixtures, the surface tension not only oscillates for small areas but can also give non-physical data, such as negative values. Analysis of the monolayers with different surfactant mixtures, ionic (DTAB, CTAB, SDS) and nonionic (SB3-12), was done for density profiles, parameters of order and pair correlation functions for small and large box areas and all of them present similar behaviour. The fluctuations and the non-physical values of the surface tension are corrected when boxes with large interfacial areas are considered. The results indicate that in order to obtain reliable values of the surface tension, in computer simulations, it is important to choose not only the correct force field but also the appropriate size of the simulation box.

References

Sharipova A., Aidarova S., Cernoch P., Miller R., Colloids Surf. A, 2013, 438, 141, https://doi.org/10.1016/j.colsurfa.2012.12.013. DOI: https://doi.org/10.1016/j.colsurfa.2012.12.013

Piasecki D. A., Wirth M. J., J. Phys. Chem., 1993, 97, 7700, https://doi.org/10.1021/j100131a045. DOI: https://doi.org/10.1021/j100131a045

Lu J. R., Hromadova M., Simister E. A., Thomas R. K., Penfold J., J. Phys. Chem., 1994, 98, 11519, https://doi.org/10.1021/j100095a037. DOI: https://doi.org/10.1021/j100095a037

Mahbub S., Rub M. A., Hoque Md. A., Khan M. A., Kumar D., J. Phys. Org. Chem., 2019, 32, e3967, https://doi.org/10.1002/poc.3967. DOI: https://doi.org/10.1002/poc.3967

Hou B., Jia R., Fu M., Wang Y., Bai Y., Huang Y., Energy Fuels, 2018, 32, 12462, https://doi.org/10.1021/acs.energyfuels.8b03450. DOI: https://doi.org/10.1021/acs.energyfuels.8b03450

Sun Z., Lian C., Li C., Zheng S., J. Colloid Interface Sci., 2020, 565, 11, https://doi.org/10.1016/j.jcis.2020.01.013. DOI: https://doi.org/10.1016/j.jcis.2020.01.013

Lunkenheimer K., Lind A., Jost M., J. Phys. Chem B., 2003, 107, 7527, https://doi.org/10.1021/jp0224867. DOI: https://doi.org/10.1021/jp0224867

Li P. X., Thomas R. K., Penfold J., Langmuir, 2014, 30, 6739, https://doi.org/10.1021/la501287v. DOI: https://doi.org/10.1021/la501287v

Kurnia I., Zhang G., Han X., Yu J., Fuel, 2020, 259, 116236, https://doi.org/10.1016/j.fuel.2019.116236. DOI: https://doi.org/10.1016/j.fuel.2019.116236

Reichert C. L., Salminen H., Bönisch G. B., Schäfer C., Weiss J., J. Colloid Interface Sci., 2018, 519, 71, https://doi.org/10.1016/j.jcis.2018.01.105. DOI: https://doi.org/10.1016/j.jcis.2018.01.105

Llamas S., Guzmán E., Akanno A., Fernández-Peña L., Ortega F., Campbell R. A., Miller R., Rubio R. G., J. Phys. Chem. C, 2018, 122, 4419, https://doi.org/10.1021/acs.jpcc.7b12457. DOI: https://doi.org/10.1021/acs.jpcc.7b12457

Llamas S., Fernández-Peña L., Akanno A., Guzmán E., Ortega V., Ortega F., Csaky A. G., Campbell R. A., Rubio R. G., Phys. Chem. Chem. Phys., 2018, 20, 1395, https://doi.org/10.1039/c7cp05528e. DOI: https://doi.org/10.1039/C7CP05528E

Chai J. L., Cui X. C., Zhang X. Y., Song M. M., Wang J., Lu J. J., J. Mol. Liq., 2018, 264, 442, https://doi.org/10.1016/j.molliq.2018.05.055. DOI: https://doi.org/10.1016/j.molliq.2018.05.055

Wang P., Khoso S. A., Cao Z., Ind. Eng. Chem. Res., 2023, 62, 8339, https://doi.org/10.1021/acs.iecr.3c00925. DOI: https://doi.org/10.1021/acs.iecr.3c00925

Tucker I. M., Burley A., Petkova R. E., Hosking S. L., Thomas R. K., Penfold J., Li P. X., Ma K., Webster J. R. P., Welbourn R., J. Colloid Interface Sci., 2020, 574, 385, https://doi.org/10.1016/j.jcis.2020.04.061. DOI: https://doi.org/10.1016/j.jcis.2020.04.061

Trokhymchuk A., Alejandre J., J. Chem. Phys., 1999, 111, 8510, https://doi.org/10.1063/1.480192. DOI: https://doi.org/10.1063/1.480192

López-Lemus J., Alejandre J., Mol. Phys., 2002, 100, 2983, https://doi.org/10.1080/00268970210121669. DOI: https://doi.org/10.1080/00268970210121669

Holcomb C. D., Clancy P., Zollweg J. A., Mol. Phys., 1993, 78, 437, https://doi.org/10.1080/00268979300100321. DOI: https://doi.org/10.1080/00268979300100321

Weng J. G., Park S., Lukes J. R., Tien C. L., J. Chem. Phys., 2000, 113, 5917, https://doi.org/10.1063/1.1290698. DOI: https://doi.org/10.1063/1.1290698

Orea P., López-Lemuz J., Alejandre J., J. Chem. Phys., 2005, 123, 114702, https://doi.org/10.1063/1.2018640. DOI: https://doi.org/10.1063/1.2018640

Zubillaga R. A., Labastida A., Cruz B., Martínez J. C., Sánchez E., Alejandre J., J. Chem. Theory Comput., 2013, 9, 1611, https://doi.org/10.1021/ct300976t. DOI: https://doi.org/10.1021/ct300976t

Fuentes-Azcatl R., Alejandre J., J. Phys. Chem. B, 2014, 118, 1263, https://doi.org/10.1021/jp410865y. DOI: https://doi.org/10.1021/jp410865y

Allen M. P., Tildesley D., Computer Simulation of Liquids, 2nd edition, Oxford University Press, 2017. DOI: https://doi.org/10.1093/oso/9780198803195.001.0001

Hess B., Kutzner C., van der Spoel D., Lindahl E., J. Chem. Theory Comput., 2008, 4, 435, https://doi.org/10.1021/ct700301q. DOI: https://doi.org/10.1021/ct700301q

Hoover W. G., Phys. Rev. A, 1985, 31, 1695, https://doi.org/10.1103/PhysRevA.31.1695. DOI: https://doi.org/10.1103/PhysRevA.31.1695

Essmann U., Perera P., Berkowitz M. L., Darden T., Lee H., Pedersen L. G., J. Chem. Phys., 1995, 103, 8577, https://doi.org/10.1063/1.470117. DOI: https://doi.org/10.1063/1.470117

Hess B., Bekker H., Berendsen H. J. C., Fraaije J. G. E. M., J. Comput. Chem., 1997, 18, 1463, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3C1463::AID-JCC4%3E3.0.CO;2-H. DOI: https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

Salas F. J., Méndez-Maldonado G. A., Núñez-Rojas E., Aguilar-Pineda G. E., Domínguez H., Alejandre J., J. Chem. Theory Comput., 2015, 11, 683, https://doi.org/10.1021/ct500853q. DOI: https://doi.org/10.1021/ct500853q

Ríos-López M., Mendez-Bermúdez J. G., Vázquez-Sánchez M. I., Domínguez H., Mol. Phys., 2019, 117, 3632, https://doi.org/10.1080/00268976.2019.1656349. DOI: https://doi.org/10.1080/00268976.2019.1656349

Egberts E., Berendsen H. J. C., J. Chem. Phys., 1988, 89, 3718, https://doi.org/10.1063/1.454893. DOI: https://doi.org/10.1063/1.454893

Adamczyk Z., Para G., Warszyński P., Langmuir, 1999, 15, 8383, https://doi.org/10.1021/la990241o. DOI: https://doi.org/10.1021/la990241o

Kuperkar K., Abezgauz L., Prasad K., Bahadur P., J. Surfactants Deterg., 2010, 13, 293, https://doi.org/10.1007/s11743-009-1173-z. DOI: https://doi.org/10.1007/s11743-009-1173-z

Addison C. C., Hutchinson S. K., J. Chem. Soc., 1948, 180, 943, https://doi.org/10.1039/JR9480000943. DOI: https://doi.org/10.1039/JR9480000943

Mysels K. J., Langmuir, 1986, 2, 423, https://doi.org/10.1021/la00070a008. DOI: https://doi.org/10.1021/la00070a008

Xiao J., Liu F., Garamus V. M., Almásy L., Handge U. A., Willumeit R., Mu B., Zou A., Langmuir, 2014, 30, 3363, https://doi.org/10.1021/la4046034. DOI: https://doi.org/10.1021/la4046034

Yamanaka M., Amano T., Ikeda N., Aratono M., Motomura K., Colloid Polym. Sci., 1992, 270, 682, https://doi.org/10.1007/BF00654044. DOI: https://doi.org/10.1007/BF00654044

Shah S. K., Chatterjee S. K., Bhattarai A., J. Mol. Liq., 2016, 222, 906, https://doi.org/10.1016/j.molliq.2016.07.098. DOI: https://doi.org/10.1016/j.molliq.2016.07.098

Domínguez H., J. Phys. Chem. B, 2006, 110, 13151, https://doi.org/10.1021/jp062018n. DOI: https://doi.org/10.1021/jp062018n

Hua X. Y., Rosen M. J., J. Colloid Interface Sci., 1982, 90, 212, https://doi.org/10.1016/0021-9797(82)90414-3. DOI: https://doi.org/10.1016/0021-9797(82)90414-3

Rosen M. J., Hua X. Y., J. Am. Oil Chem. Soc., 1982, 59, 582, https://doi.org/10.1007/BF02636329. DOI: https://doi.org/10.1007/BF02636329

Dąbrowska K., Pizio O., Sokołowski S., Condens. Matter Phys., 2022, 25, 33603, https://doi.org/10.5488/CMP.25.33603. DOI: https://doi.org/10.5488/CMP.25.33603

Pizio O., Sokołowski S., Mol. Phys., 2022, 120, e2011454, https://doi.org/10.1080/00268976.2021.2011454. DOI: https://doi.org/10.1080/00268976.2021.2011454

Pizio O., Bucior K., Patrykiejew A., Sokołowski S., J. Chem Phys., 2005, 123, 214902, https://doi.org/10.1063/1.2128701. DOI: https://doi.org/10.1063/1.2128701

Published

2024-03-28

How to Cite

[1]
C. J. Guzman-Valencia, J. Toriz-Salinas, H. Espinosa-Jimenez, A. B. Salazar-Arriaga, J. L. López-Cervantes, and H. Dominguez, “Finite size effects and optimization of the calculation of the surface tension in surfactant mixtures at liquid/vapour interfaces”, Condens. Matter Phys., vol. 27, no. 1, p. 13605, Mar. 2024, doi: 10.5488/cmp.27.13605.

Similar Articles

1-10 of 32

You may also start an advanced similarity search for this article.