Finite size effects and optimization of the calculation of the surface tension in surfactant mixtures at liquid/vapour interfaces
DOI:
https://doi.org/10.5488/cmp.27.13605Keywords:
finite size effects, molecular dynamics, surface tension, surfactant monolayer mixtures, water/airAbstract
The surface tension of monolayers with mixtures of anionic and nonionic surfactant at the liquid/vapour interface is studied. Previous works have observed that calculations of the surface tension of simple fluids show artificial oscillations for small interfacial areas, indicating that the surface tension data fluctuate due to the finite size effects and periodic boundary conditions. In the case of simulations of monolayers composed of surfactant mixtures, the surface tension not only oscillates for small areas but can also give non-physical data, such as negative values. Analysis of the monolayers with different surfactant mixtures, ionic (DTAB, CTAB, SDS) and nonionic (SB3-12), was done for density profiles, parameters of order and pair correlation functions for small and large box areas and all of them present similar behaviour. The fluctuations and the non-physical values of the surface tension are corrected when boxes with large interfacial areas are considered. The results indicate that in order to obtain reliable values of the surface tension, in computer simulations, it is important to choose not only the correct force field but also the appropriate size of the simulation box.
References
Sharipova A., Aidarova S., Cernoch P., Miller R., Colloids Surf. A, 2013, 438, 141, https://doi.org/10.1016/j.colsurfa.2012.12.013. DOI: https://doi.org/10.1016/j.colsurfa.2012.12.013
Piasecki D. A., Wirth M. J., J. Phys. Chem., 1993, 97, 7700, https://doi.org/10.1021/j100131a045. DOI: https://doi.org/10.1021/j100131a045
Lu J. R., Hromadova M., Simister E. A., Thomas R. K., Penfold J., J. Phys. Chem., 1994, 98, 11519, https://doi.org/10.1021/j100095a037. DOI: https://doi.org/10.1021/j100095a037
Mahbub S., Rub M. A., Hoque Md. A., Khan M. A., Kumar D., J. Phys. Org. Chem., 2019, 32, e3967, https://doi.org/10.1002/poc.3967. DOI: https://doi.org/10.1002/poc.3967
Hou B., Jia R., Fu M., Wang Y., Bai Y., Huang Y., Energy Fuels, 2018, 32, 12462, https://doi.org/10.1021/acs.energyfuels.8b03450. DOI: https://doi.org/10.1021/acs.energyfuels.8b03450
Sun Z., Lian C., Li C., Zheng S., J. Colloid Interface Sci., 2020, 565, 11, https://doi.org/10.1016/j.jcis.2020.01.013. DOI: https://doi.org/10.1016/j.jcis.2020.01.013
Lunkenheimer K., Lind A., Jost M., J. Phys. Chem B., 2003, 107, 7527, https://doi.org/10.1021/jp0224867. DOI: https://doi.org/10.1021/jp0224867
Li P. X., Thomas R. K., Penfold J., Langmuir, 2014, 30, 6739, https://doi.org/10.1021/la501287v. DOI: https://doi.org/10.1021/la501287v
Kurnia I., Zhang G., Han X., Yu J., Fuel, 2020, 259, 116236, https://doi.org/10.1016/j.fuel.2019.116236. DOI: https://doi.org/10.1016/j.fuel.2019.116236
Reichert C. L., Salminen H., Bönisch G. B., Schäfer C., Weiss J., J. Colloid Interface Sci., 2018, 519, 71, https://doi.org/10.1016/j.jcis.2018.01.105. DOI: https://doi.org/10.1016/j.jcis.2018.01.105
Llamas S., Guzmán E., Akanno A., Fernández-Peña L., Ortega F., Campbell R. A., Miller R., Rubio R. G., J. Phys. Chem. C, 2018, 122, 4419, https://doi.org/10.1021/acs.jpcc.7b12457. DOI: https://doi.org/10.1021/acs.jpcc.7b12457
Llamas S., Fernández-Peña L., Akanno A., Guzmán E., Ortega V., Ortega F., Csaky A. G., Campbell R. A., Rubio R. G., Phys. Chem. Chem. Phys., 2018, 20, 1395, https://doi.org/10.1039/c7cp05528e. DOI: https://doi.org/10.1039/C7CP05528E
Chai J. L., Cui X. C., Zhang X. Y., Song M. M., Wang J., Lu J. J., J. Mol. Liq., 2018, 264, 442, https://doi.org/10.1016/j.molliq.2018.05.055. DOI: https://doi.org/10.1016/j.molliq.2018.05.055
Wang P., Khoso S. A., Cao Z., Ind. Eng. Chem. Res., 2023, 62, 8339, https://doi.org/10.1021/acs.iecr.3c00925. DOI: https://doi.org/10.1021/acs.iecr.3c00925
Tucker I. M., Burley A., Petkova R. E., Hosking S. L., Thomas R. K., Penfold J., Li P. X., Ma K., Webster J. R. P., Welbourn R., J. Colloid Interface Sci., 2020, 574, 385, https://doi.org/10.1016/j.jcis.2020.04.061. DOI: https://doi.org/10.1016/j.jcis.2020.04.061
Trokhymchuk A., Alejandre J., J. Chem. Phys., 1999, 111, 8510, https://doi.org/10.1063/1.480192. DOI: https://doi.org/10.1063/1.480192
López-Lemus J., Alejandre J., Mol. Phys., 2002, 100, 2983, https://doi.org/10.1080/00268970210121669. DOI: https://doi.org/10.1080/00268970210121669
Holcomb C. D., Clancy P., Zollweg J. A., Mol. Phys., 1993, 78, 437, https://doi.org/10.1080/00268979300100321. DOI: https://doi.org/10.1080/00268979300100321
Weng J. G., Park S., Lukes J. R., Tien C. L., J. Chem. Phys., 2000, 113, 5917, https://doi.org/10.1063/1.1290698. DOI: https://doi.org/10.1063/1.1290698
Orea P., López-Lemuz J., Alejandre J., J. Chem. Phys., 2005, 123, 114702, https://doi.org/10.1063/1.2018640. DOI: https://doi.org/10.1063/1.2018640
Zubillaga R. A., Labastida A., Cruz B., Martínez J. C., Sánchez E., Alejandre J., J. Chem. Theory Comput., 2013, 9, 1611, https://doi.org/10.1021/ct300976t. DOI: https://doi.org/10.1021/ct300976t
Fuentes-Azcatl R., Alejandre J., J. Phys. Chem. B, 2014, 118, 1263, https://doi.org/10.1021/jp410865y. DOI: https://doi.org/10.1021/jp410865y
Allen M. P., Tildesley D., Computer Simulation of Liquids, 2nd edition, Oxford University Press, 2017. DOI: https://doi.org/10.1093/oso/9780198803195.001.0001
Hess B., Kutzner C., van der Spoel D., Lindahl E., J. Chem. Theory Comput., 2008, 4, 435, https://doi.org/10.1021/ct700301q. DOI: https://doi.org/10.1021/ct700301q
Hoover W. G., Phys. Rev. A, 1985, 31, 1695, https://doi.org/10.1103/PhysRevA.31.1695. DOI: https://doi.org/10.1103/PhysRevA.31.1695
Essmann U., Perera P., Berkowitz M. L., Darden T., Lee H., Pedersen L. G., J. Chem. Phys., 1995, 103, 8577, https://doi.org/10.1063/1.470117. DOI: https://doi.org/10.1063/1.470117
Hess B., Bekker H., Berendsen H. J. C., Fraaije J. G. E. M., J. Comput. Chem., 1997, 18, 1463, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3C1463::AID-JCC4%3E3.0.CO;2-H. DOI: https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
Salas F. J., Méndez-Maldonado G. A., Núñez-Rojas E., Aguilar-Pineda G. E., Domínguez H., Alejandre J., J. Chem. Theory Comput., 2015, 11, 683, https://doi.org/10.1021/ct500853q. DOI: https://doi.org/10.1021/ct500853q
Ríos-López M., Mendez-Bermúdez J. G., Vázquez-Sánchez M. I., Domínguez H., Mol. Phys., 2019, 117, 3632, https://doi.org/10.1080/00268976.2019.1656349. DOI: https://doi.org/10.1080/00268976.2019.1656349
Egberts E., Berendsen H. J. C., J. Chem. Phys., 1988, 89, 3718, https://doi.org/10.1063/1.454893. DOI: https://doi.org/10.1063/1.454893
Adamczyk Z., Para G., Warszyński P., Langmuir, 1999, 15, 8383, https://doi.org/10.1021/la990241o. DOI: https://doi.org/10.1021/la990241o
Kuperkar K., Abezgauz L., Prasad K., Bahadur P., J. Surfactants Deterg., 2010, 13, 293, https://doi.org/10.1007/s11743-009-1173-z. DOI: https://doi.org/10.1007/s11743-009-1173-z
Addison C. C., Hutchinson S. K., J. Chem. Soc., 1948, 180, 943, https://doi.org/10.1039/JR9480000943. DOI: https://doi.org/10.1039/JR9480000943
Mysels K. J., Langmuir, 1986, 2, 423, https://doi.org/10.1021/la00070a008. DOI: https://doi.org/10.1021/la00070a008
Xiao J., Liu F., Garamus V. M., Almásy L., Handge U. A., Willumeit R., Mu B., Zou A., Langmuir, 2014, 30, 3363, https://doi.org/10.1021/la4046034. DOI: https://doi.org/10.1021/la4046034
Yamanaka M., Amano T., Ikeda N., Aratono M., Motomura K., Colloid Polym. Sci., 1992, 270, 682, https://doi.org/10.1007/BF00654044. DOI: https://doi.org/10.1007/BF00654044
Shah S. K., Chatterjee S. K., Bhattarai A., J. Mol. Liq., 2016, 222, 906, https://doi.org/10.1016/j.molliq.2016.07.098. DOI: https://doi.org/10.1016/j.molliq.2016.07.098
Domínguez H., J. Phys. Chem. B, 2006, 110, 13151, https://doi.org/10.1021/jp062018n. DOI: https://doi.org/10.1021/jp062018n
Hua X. Y., Rosen M. J., J. Colloid Interface Sci., 1982, 90, 212, https://doi.org/10.1016/0021-9797(82)90414-3. DOI: https://doi.org/10.1016/0021-9797(82)90414-3
Rosen M. J., Hua X. Y., J. Am. Oil Chem. Soc., 1982, 59, 582, https://doi.org/10.1007/BF02636329. DOI: https://doi.org/10.1007/BF02636329
Dąbrowska K., Pizio O., Sokołowski S., Condens. Matter Phys., 2022, 25, 33603, https://doi.org/10.5488/CMP.25.33603. DOI: https://doi.org/10.5488/CMP.25.33603
Pizio O., Sokołowski S., Mol. Phys., 2022, 120, e2011454, https://doi.org/10.1080/00268976.2021.2011454. DOI: https://doi.org/10.1080/00268976.2021.2011454
Pizio O., Bucior K., Patrykiejew A., Sokołowski S., J. Chem Phys., 2005, 123, 214902, https://doi.org/10.1063/1.2128701. DOI: https://doi.org/10.1063/1.2128701
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 C. J. Guzman-Valencia, J. Toriz-Salinas, H. Espinosa-Jimenez, A. B. Salazar-Arriaga, J. L. López-Cervantes, H. Dominguez
This work is licensed under a Creative Commons Attribution 4.0 International License.