Vapour-liquid phase behaviour of primitive models of ionic liquids confined in disordered porous media

Authors

  • T. Hvozd Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Str., 79011 Lviv, Ukraine https://orcid.org/0000-0002-5113-8259
  • T. Patsahan Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Str., 79011 Lviv, Ukraine; Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, 12 S. Bandera Str., 79013 Lviv, Ukraine https://orcid.org/0000-0002-7870-2219
  • Yu. Kalyuzhnyi Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Str., 79011 Lviv, Ukraine; University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia https://orcid.org/0000-0002-0631-9982
  • O. Patsahan Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Str., 79011 Lviv, Ukraine https://orcid.org/0000-0002-5839-3893
  • M. Holovko Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Str., 79011 Lviv, Ukraine https://orcid.org/0000-0001-8114-5356

DOI:

https://doi.org/10.5488/cmp.27.23602

Keywords:

ionic liquids, disordered porous medium, chain-like cations, vapour-liquid phase diagrams

Abstract

We  develop a theory for the description  of  ionic liquids (ILs) confined in a porous medium formed by a matrix of immobile randomly placed uncharged  particles. The IL is modelled as an electroneutral  mixture of hard-sphere anions and flexible linear chain cations, represented by tangentially bonded hard spheres with the charge located on one of the terminal beads. The theory combines  a  generalization of the scaled particle theory, Wertheim's thermodynamic perturbation theory, and the associative mean-spherical approximation  and allows one to obtain analytical expressions for the pressure and chemical potentials of the  matrix-IL system. Using the theory, we calculate the vapour–liquid phase diagrams for two versions of the IL model, i.e., when the cation is modelled as a dimer and as a chain, in a complete association limit. The effects of the matrix confinement  and of the  non-spherical shape of the cations on the vapour-liquid phase diagrams are studied.

References

Buzzeo M. C., Evans R. G., Compton R. G., ChemPhysChem, 2004, 5, No. 8, 1106–1120. DOI: https://doi.org/10.1002/cphc.200301017

Silvester D. S., Compton R. G., Z. Phys. Chem., 2006, 220, No. 10, 1247–1274. DOI: https://doi.org/10.1524/zpch.2006.220.10.1247

Suo L., Borodin O., Gao T., Olguin M., Ho J., Fan X., Luo C., Wang C., Xu K., Science, 2015, 350, No. 6263, 938–943. DOI: https://doi.org/10.1126/science.aab1595

Correia D. M., Fernandes L. C., Martins P. M., García-Astrain C., Costa C. M., Reguera J., Lanceros-Méndez S., Adv. Funct. Mater., 2020, 30, No. 24, 1909736. DOI: https://doi.org/10.1002/adfm.201909736

Egorova K. S., Gordeev E. G., Ananikov V. P., Chem. Rev., 2017, 117, No. 10, 7132–7189. DOI: https://doi.org/10.1021/acs.chemrev.6b00562

Singh M. P., Singh R. K., Chandra S., Prog. Mater. Sci., 2014, 64, 73–120. DOI: https://doi.org/10.1016/j.pmatsci.2014.03.001

Kondrat S., Feng G., Bresme F., Urbakh M., Kornyshev A. A., Chem. Rev., 2023, 123, No. 10, 6668–6715. DOI: https://doi.org/10.1021/acs.chemrev.2c00728

Patsahan O., Mryglod I., In: Order, Disorder and Criticality, Vol. 3, Holovatch Yu. (Ed.), World Scientific, Singapore, 47–92.

Fisher M. E., Levin Y., Phys. Rev. Lett., 1993, 71, 3826–3829. DOI: https://doi.org/10.1103/PhysRevLett.71.3826

Levin Y., Fisher M. E., Physica A, 1996, 225, No. 2, 164–220. DOI: https://doi.org/10.1016/0378-4371(95)00336-3

Holovko M. F., Kalyuzhnyi Yu. V., Mol. Phys., 1991, 73, No. 5, 1145–1157. DOI: https://doi.org/10.1080/00268979100101831

Kalyuzhnyi Yu., Mol. Phys., 1998, 94, No. 4, 735–742. DOI: https://doi.org/10.1080/00268979809482366

Kalyuzhnyi Yu. V., Holovko M. F., Vlachy V., J. Stat. Phys., 2000, 100, No. 1/2, 243–265. DOI: https://doi.org/10.1023/A:1018699914319

Blum L., Bernard O., J. Stat. Phys., 1995, 79, No. 3–4, 569–583. DOI: https://doi.org/10.1007/BF02184871

Bernard O., Blum L., J. Chem. Phys., 1996, 104, No. 12, 4746–4754. DOI: https://doi.org/10.1063/1.471168

Jiang J.W., Blum L., Bernard O., Mol. Phys., 2001, 99, No. 20, 1765–1767. DOI: https://doi.org/10.1080/00268970110072764

Jiang J., Blum L., Bernard O., Prausnitz J. M., Sandler S. I., J. Chem. Phys., 2002, 116, No. 18, 7977–7982. DOI: https://doi.org/10.1063/1.1468638

Qin Y., Prausnitz J. M., J. Chem. Phys., 2004, 121, No. 7, 3181–3183. DOI: https://doi.org/10.1063/1.1770651

Caillol J.-M., Patsahan O., Mryglod I., Condens. Matter Phys., 2005, 8, No. 4, 665–684. DOI: https://doi.org/10.5488/CMP.8.4.665

Patsahan O., Mryglod I., Patsahan T., J. Phys.: Condens. Matter, 2006, 18, No. 45, 10223–10235. DOI: https://doi.org/10.1088/0953-8984/18/45/009

Patsahan O. V., Patsahan T. M., Phys. Rev. E, 2010, 81, No. 3, 031110. DOI: https://doi.org/10.1103/PhysRevE.81.031110

Holovko M., Patsahan T., Patsahan O., J. Mol. Liq., 2017, 228, 215–223. DOI: https://doi.org/10.1016/j.molliq.2016.10.045

Malvaldi M., Chiappe C., J. Phys.: Condens. Matter, 2007, 20, No. 3, 035108. DOI: https://doi.org/10.1088/0953-8984/20/03/035108

Spohr H. V., Patey G. N., J. Chem. Phys., 2009, 130, No. 10, 104506. DOI: https://doi.org/10.1063/1.3078381

Martín-Betancourt M., Romero-Enrique J. M., Rull L. F., J. Phys. Chem. B, 2009, 113, No. 27, 9046–9049. DOI: https://doi.org/10.1021/jp903709k

Fedorov M., Georgi N., Kornyshev A., Electrochem. Commun., 2010, 12, No. 2, 296–299,. DOI: https://doi.org/10.1016/j.elecom.2009.12.019

Wu J., Jiang T., Jiang D., Jin Z., Henderson D., Soft Matter, 2011, 7, No. 23, 11222. DOI: https://doi.org/10.1039/c1sm06089a

Ganzenmüller G., Camp P., Condens. Matter Phys., 2011, 14, No. 3, 33602. DOI: https://doi.org/10.5488/CMP.14.33602

Lindenberg E. K., Patey G. N., J. Chem. Phys., 2014, 140, No. 10, 104504. DOI: https://doi.org/10.1063/1.4867275

Lindenberg E. K., Patey G. N., J. Chem. Phys., 2015, 143, No. 2, 024508. DOI: https://doi.org/10.1063/1.4923344

Guzmán O., Ramos Lara J. E., del Río F., J. Phys. Chem. B, 2015, 119, No. 18, 5864–5872. DOI: https://doi.org/10.1021/jp511571h

Silvestre-Alcantara W., Bhuiyan L., Lamperski S., Kaja M., Henderson D., Condens. Matter Phys., 2016, 19, No. 1, 13603. DOI: https://doi.org/10.5488/CMP.19.13603

Lu H., Li B., Nordholm S., Woodward C. E., Forsman J., J. Chem. Phys., 2016, 145, No. 23, 234510. DOI: https://doi.org/10.1063/1.4972214

Kalyuzhnyi Yu. V., Reščič J., Holovko M., Cummings P. T., J. Mol. Liq., 2018, 270, 7–13. DOI: https://doi.org/10.1016/j.molliq.2018.01.109

Madden W. G., Glandt E. D., J. Stat. Phys., 1988, 51, No. 3-4, 537–558. DOI: https://doi.org/10.1007/BF01028471

Holovko M., Dong W., J. Phys. Chem. B, 2009, 113, No. 18, 6360–6365. DOI: https://doi.org/10.1021/jp809706n

Patsahan T., Holovko M., Dong W., J. Chem. Phys., 2011, 134, No. 7, 074503: 1–11. DOI: https://doi.org/10.1063/1.3532546

Holovko M., Patsahan T., DongW., Pure Appl. Chem., 2013, 85,No. 1, 115–133. DOI: https://doi.org/10.1351/PAC-CON-12-05-06

Holovko M. F., Patsahan T., Dong W., Condens. Matter Phys., 2012, 15, No. 2, 23607: 1–13. DOI: https://doi.org/10.5488/CMP.15.23607

Holovko M., Patsahan T., Dong W., Condens. Matter Phys., 2017, 20, No. 3, 33602: 1–14. DOI: https://doi.org/10.5488/CMP.20.33602

Holovko M. F., Patsahan O., Patsahan T., J. Phys.: Condens. Matter, 2016, 28,No. 24, 414003. DOI: https://doi.org/10.1088/0953-8984/28/41/414003

Chen W., Zhao S. L., Holovko M., Chen X. S., Dong W., J. Phys. Chem. B, 2016, 120, No. 24, 5491–5504. DOI: https://doi.org/10.1021/acs.jpcb.6b02957

Holovko M. F., Patsahan T. M., Patsahan O.V., J. Mol. Liq., 2017, 235, 53–59. DOI: https://doi.org/10.1016/j.molliq.2016.11.030

Patsahan O. V., Patsahan T. M., Holovko M. F., Phys. Rev. E, 2018, 97, No. 2, 022109. DOI: https://doi.org/10.1103/PhysRevE.97.022109

Patsahan O., Patsahan T., Holovko M., J. Mol. Liq., 2018, 270, 97–105. DOI: https://doi.org/10.1016/j.molliq.2017.12.033

Wertheim M. S., J. Stat. Phys., 1984, 35, No. 1-2, 19–34. DOI: https://doi.org/10.1007/BF01017362

Wertheim M. S., J. Stat. Phys., 1984, 35, No. 1-2, 35–47. DOI: https://doi.org/10.1007/BF01017363

Wertheim M. S., J. Stat. Phys., 1986, 42, No. 3-4, 459–476. DOI: https://doi.org/10.1007/BF01127721

Wertheim M. S., J. Stat. Phys., 1986, 42, No. 3-4, 477–492. DOI: https://doi.org/10.1007/BF01127722

Reiss H., Frisch H. L., Lebowitz J. L., J. Chem. Phys., 1959, 31, No. 2, 369–380. DOI: https://doi.org/10.1063/1.1730361

Reiss H., Frisch H. L., Helfand E., Lebowitz J. L., J. Chem. Phys., 1960, 32, No. 1, 119–124. DOI: https://doi.org/10.1063/1.1700883

Lebowitz J. L., Helfand E., Praestgaard E., J. Chem. Phys., 1965, 43, No. 3, 774–779. DOI: https://doi.org/10.1063/1.1696842

Boublík T., Mol. Phys., 1974, 27, No. 5, 1415–1427. DOI: https://doi.org/10.1080/00268977400101191

Published

2024-06-28

Issue

Section

Articles

Categories

How to Cite

[1]
T. Hvozd, T. Patsahan, Y. Kalyuzhnyi, O. Patsahan, and M. Holovko, “Vapour-liquid phase behaviour of primitive models of ionic liquids confined in disordered porous media”, Condens. Matter Phys., vol. 27, no. 2, p. 23602, Jun. 2024, doi: 10.5488/cmp.27.23602.

Similar Articles

11-20 of 33

You may also start an advanced similarity search for this article.