Ising model in the Rényi statistics: the finite size effects

Authors

DOI:

https://doi.org/10.5488/cmp.27.43603

Keywords:

Rényi statistics, microcanocical ensemble, entropic phase transition, Ising model

Abstract

The Rényi statistics is applied for a description of finite size effects in the 1D Ising model.We calculate the internal energy of the spin chain and the system temperature using the Rényi distribution and postulate them to be equal to their counterparts, obtained in the microcanonical ensemble. It allows us to self-consistently derive the Rényi q-index and the Lagrange parameter T to relate them to the physically observed system temperature Tph, and to show that the entropic phase transitions are possible in a broad temperature domain. We have also studied the temperature dependence of the internal energy U(Tph) at constant q and an influence of the size related effects on the system thermodynamics.

References

Jaynes E. T., Phys. Rev., 1957, 106, 620. DOI: https://doi.org/10.1103/PhysRev.106.620

Ho W., J. Chem. Phys., 2002, 117, 11033. DOI: https://doi.org/10.1063/1.1521153

Claridge S. A., Schwartz J. J., Weiss P. S, ACS Nano, 2011, 5, 693–729. DOI: https://doi.org/10.1021/nn103298x

Jarzynski C., Thermodynamics of Nanosystems, In: Reports on Leading-Edge Engineering from the 2003 NAE Symposium on Frontiers of Engineering, National Academies Press, Washington, D. C., 2004.

Jarzynski C., Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale. In: Duplantier B. (Eds.), Progress in Mathematical Physics, 63, Birkhäuser, Basel, 2013. DOI: https://doi.org/10.1007/978-3-0348-0359-5_4

Zubarev D. N., Morozov V. G., Röpke G., Statistical Mechanics of Nonequilibrium Processes, Vol. 1, Basic Concepts, Kinetic theory, Akademie Verlag, Berlin, 1996.

Esposito M., Gaspard P., Phys. Rev. E, 2007, 76, 041134. DOI: https://doi.org/10.1103/PhysRevE.76.041134

Riera-Campeny A., Sanpera A., Strasberg P., Phys. Rev. E, 2022, 105, 054119. DOI: https://doi.org/10.1103/PhysRevE.105.054119

Turán P. (Ed.), Selected papers of Alfréd Rényi, Vol. 2, Akadémiai Kiadó, Budapest, 1976.

Tsallis C., J. Stat. Phys., 1988, 52, 479–487. DOI: https://doi.org/10.1007/BF01016429

Tsallis C., Entropy, 2019, 21, 696. DOI: https://doi.org/10.3390/e21070696

Sharma B. D., Mittal D. P., J. Math. Sci., 1975, 10, 28-40. DOI: https://doi.org/10.1080/00087114.1975.10796605

Abe S., Phys. Lett. A, 2000, 271, 74. DOI: https://doi.org/10.1016/S0375-9601(00)00337-6

Bashkirov A. G., In: Chaos, Nonlinearity, Complexity, Vol. 206, Sengupta A. (Ed.), Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, 114–161.

Almeida M. P., Physica A, 2001, 300, 424–432. DOI: https://doi.org/10.1016/S0378-4371(01)00353-3

Klimontovich Yu. L., Statistical Theory of Open Systems: Volume 1: A Unified Approach to Kinetic Description of Processes in Active Systems, Fundamental Theories of Physics, Vol. 67, Springer Netherlands, Dordrecht, 1995.

Morozov V. G., Mathey S., Röpke G., Phys. Rev. A, 2012, 85, 022101. DOI: https://doi.org/10.1103/PhysRevA.85.022101

Ignatyuk V. V., Morozov V. G., Phys. Rev. A, 2015, 91, 052102. DOI: https://doi.org/10.1103/PhysRevA.91.052102

Semin V., Petruccione F., Sci. Rep., 2020, 10, 2607. DOI: https://doi.org/10.1038/s41598-020-59241-7

Parvan A. S., Biró T. S., Phys. Lett. A, 2005, 340, 375–387. DOI: https://doi.org/10.1016/j.physleta.2005.04.036

Parvan A. S., Phys. Lett. A, 2006, 360, 26–34. DOI: https://doi.org/10.1016/j.physleta.2006.07.052

Parvan A. S., Biró T. S., Phys. Lett. A, 2010, 374, 1951–1957. DOI: https://doi.org/10.1016/j.physleta.2010.03.007

Landau L. D., Lifshits E. M., Statistical Physics, Course of Theoretical Physics, Vol. 5, Elsevier, third edn., 2013.

Lenzi E. K., Mendes R. S., da Silva L. R., Physica A, 2000, 280, 337–345. DOI: https://doi.org/10.1016/S0378-4371(00)00007-8

Tsallis C., Mendes R. S., Plastino A. R., 1998, Physica, 261, 534–554. DOI: https://doi.org/10.1016/S0378-4371(98)00437-3

Chung W. S., Hassanabadi H., Physica A, 2019, 532, 121720. DOI: https://doi.org/10.1016/j.physa.2019.121720

Ilin P. K., Koval G. V., Savchenko A. M., Moscow Univ. Phys., 2020, 75, No. 5, 415–419. DOI: https://doi.org/10.3103/S0027134920050148

Tsallis C., Axioms, 2016, 5, 20. DOI: https://doi.org/10.3390/axioms5030020

Ruthotto E., Preprint arXiv:cond-mat.stat-mech/0310413, 2003.

Ishihara M., Eur. Phys. J. B, 2022, 95, 53. DOI: https://doi.org/10.1140/epjb/s10051-022-00309-w

Ishihara M., Eur. Phys. J. B, 2023, 96, 13. DOI: https://doi.org/10.1140/epjb/s10051-023-00481-7

Lima A. R., Penna T. J. P., Phys. Lett. A, 1999, 256, 221. DOI: https://doi.org/10.1016/S0375-9601(99)00241-8

Campisi M., Zueco D., Talkner P., Chem. Phys., 2010, 375, 187–194. DOI: https://doi.org/10.1016/j.chemphys.2010.04.026

Ramshaw J. D., Phys. Lett. A, 1995, 198, 122–125. DOI: https://doi.org/10.1016/0375-9601(95)00033-Y

Prosper H. B., Am. J. Phys., 1993, 61, 54. DOI: https://doi.org/10.1119/1.17410

Published

2024-12-30

Issue

Section

Articles

Categories

How to Cite

[1]
V. V. Ignatyuk and A. P. Moina, “Ising model in the Rényi statistics: the finite size effects”, Condens. Matter Phys., vol. 27, no. 4, p. 43603, Dec. 2024, doi: 10.5488/cmp.27.43603.

Similar Articles

1-10 of 42

You may also start an advanced similarity search for this article.