Thermodynamic relation for the systems with inhomogeneous distribution of particles

Authors

DOI:

https://doi.org/10.5488/cmp.28.33502

Keywords:

local equilibrium partition function, equation of state, self-gravitating system, long-range interaction

Abstract

 For the system with inhomogeneous distribution of macroscopic parameters we obtain thermodynamic relation  which depends on the spatial point(coordinate). In our approach, to obtain such a relation we use the basic ideas  of the method of nonequilibrium statistical operator combined with the Hubbard–Stratonovich transformation.  First of all, we define the thermodynamic relation for the system with homogeneous distribution of particles.  Possible behavior peculiarities of systems with different character of interaction in nonequilibrium case are  predicted. By saddle-point method we find the dominant contributions to the partition function and obtain all  thermodynamic parameters of the systems with different character of interaction. The formations of saddle  state in all systems of interacting particles at different temperatures and particle distributions have the same  physical nature and therefore they can be described in the same way. We consider the systems with attractive  and repulsive interactions as well as self-gravitating systems.

References

Yukhnovskii I. R., Phase Transitions of the Second Order: Collective Variables Method, World Scientific, Singapore, 1987. DOI: https://doi.org/10.1142/0289

Yukhnovskii I. R., Holovko M. F., Statistical Theory of Classical Equilibrium Systems, Naukova Dumka, Kyiv, 1980 (in Russian).

Yukhnovskii I. R., Kozlovskii M. P., Pylyuk I. V., Microscopic Theory of Phase Transitions in the Three Dimensional Systems, Eurosvit, Lviv, 2001, (in Ukrainian).

Yukhnovskii I. R., Gurskii Z. A., Quantuum-Statistical Theory of Disordered Systems, Naukova dumka, Kyiv, 1991, (in Russian).

Zubarev D. N., Nonequilibrium Statistical Thermodynamics, Consultants Bureau, New-York, 1974. DOI: https://doi.org/10.21236/AD0784411

Yukhnovskii I. R., Hlushak P. A., Tokarchuk M. V., Condens. Matter Phys., 2016, 19, 43705. DOI: https://doi.org/10.5488/CMP.19.43705

Thirring W., Z. Phys., 1970, 235, 339–352. DOI: https://doi.org/10.1007/BF01403177

Chavanis P.-H., Rosier C., Sire C., Phys. Rev. E, 2002, 66, 036105.

Laliena V., Nucl. Phys. B, 2003, 668, 403–411. DOI: https://doi.org/10.1016/j.nuclphysb.2003.07.005

Pakter R., Marcos B., Levin Y., Phys. Rev. Lett., 2013, 111, 230603. DOI: https://doi.org/10.1103/PhysRevLett.111.110504

Benetti F. P. C., Ribeiro-Teixeira A. C., Pakter R., Levin Y., Phys. Rev. Lett., 2014, 113, 100602. DOI: https://doi.org/10.1103/PhysRevLett.113.100602

Baxter R., Exactly Solved Models in Statistical Mechanics, Academic Press, New York, 1980.

Ruelle D., Statistical Mechanics: Rigorous Results, W. A. Benjamin, New York, 1969.

Hubbard J., Phys. Rev. Lett., 1959, 3, 77–80. DOI: https://doi.org/10.1103/PhysRevLett.3.77

Stratonovich R. L., Sov. Phys. Dokl., 1958, 2, 416–419.

Belotskii E. D., Lev B. I., Theor. Math. Phys., 1984, 60, 711–719. DOI: https://doi.org/10.1007/BF01018256

Lev B. I., Zhugaevych A. Ya., Phys. Rev. E, 1998, 57, 6460. DOI: https://doi.org/10.1103/PhysRevE.57.6460

Lev B. I., Int. J. Mod. Phys. B, 2011, 25, 2237–2249. DOI: https://doi.org/10.1142/S0217979211100771

Kleinert H., Gauge Fields in Condensed Matter, Word Scientific, Singapure, 1989. DOI: https://doi.org/10.1142/0356

Mryglod I. M., Tokarchuk M. V., Theor. Math. Phys., 1998, 115, 479–495. DOI: https://doi.org/10.1007/BF02575505

Lev B. I., J. Mod. Phys., 2018, 9, 2223–2232. DOI: https://doi.org/10.4236/jmp.2018.912140

Lev B. I., Zagorodny A. G., Phys. Rev. E, 2011, 84, 061115. DOI: https://doi.org/10.1103/PhysRevE.84.061115

Lev B. I., J. Mod. Phys., 2019, 10, 687–698. DOI: https://doi.org/10.4236/jmp.2019.107049

Taruya A., Sakagami M. A., Phys. Rev. Lett., 2003, 90, 181101. DOI: https://doi.org/10.1103/PhysRevLett.90.181101

Zubarev D. N., Morozov V., Röpke G., Statistical Mechanics of Nonequilibrium Processes, Vol. 1, Wiley, 1996.

Zubarev D. N., Morozov V., Röpke G., Statistical Mechanics of Nonequilibrium Processes, Vol. 2, Wiley, 1997.

Huang K., Statistical Mechanics, John Wiley and Sons, London, 1963.

Isihara A., Statistical Mechanics, Academic Press, New York, 1971. DOI: https://doi.org/10.1016/B978-0-12-374650-4.50007-3

Khachaturjan A. G., Theory of Phase Transitions and the Structure of the Solid, Nauka, Moscow, 1979, (in Russian).

Langer J. S., Ann. Phys., 1967, 41, 108–157. DOI: https://doi.org/10.1016/0003-4916(67)90200-X

Tokarchuk M. V., Omelyan I. P., Kobryn A. E., Condens. Matter. Phys., 1998, 1, 687–751. DOI: https://doi.org/10.5488/CMP.1.4.687

Lifshits E. M., Pitaevskii L. P., Physical kinetics, Course of theoretical physics, Vol. 10, Pergamon Press, Oxford, 1981.

Goryachev S. B., Phys. Rev. Lett., 1994, 72, 1850–1853. DOI: https://doi.org/10.1103/PhysRevLett.72.1850

Cahn J. W., Acta Metall., 1961, 9, 795–901. DOI: https://doi.org/10.1016/0001-6160(61)90182-1

Shi K., Gu K., Shen Y., Srivastava D., Santiso E. E., Gubbins K. E., J. Chem. Phys., 2018, 148, 174505. DOI: https://doi.org/10.1063/1.5029488

Levin Y., Pakter R., Rizzato F. B., Teles T. N., Benetti F. P. C., Phys. Rep., 2014, 535, 1–60. DOI: https://doi.org/10.1016/j.physrep.2013.10.001

Balescu R., Equilibrium and Non-Equilibrium Statistical Mechanics, John Wiley and Sons, New York, 1978.

Padmanabhan T., Phys. Rep., 1990, 188, 285–362. DOI: https://doi.org/10.1016/0370-1573(90)90051-3

Chavanis P. H., Int. J. Mod. Phys. B, 2006, 20, 3113–3198. DOI: https://doi.org/10.1142/S0217979206035400

Sire C., Chavanis P.-H., Phys. Rev. E, 2002, 66, 046133. DOI: https://doi.org/10.1103/PhysRevE.66.036105

Lynden-Bell D., Wood R., Royal A., Mon. Not. R. Astron. Soc., 1968, 138, 495–525. DOI: https://doi.org/10.1093/mnras/138.4.495

Saslow W. C., Gravitational Physics of Stellar and Galactic System, Cambridge University Press, New York, 1987.

Chandrasekhar S., An Introduction to the Study of Stellar Structure, Dover Publications, New York, 1942.

Published

2025-09-23

Issue

Section

Сollection of the articles dedicated to the 100th anniversary of Prof. Ihor Yukhnovskii

Categories

How to Cite

[1]
A. P. Rebesh, B. I. Lev, and A. Zagorodny, “Thermodynamic relation for the systems with inhomogeneous distribution of particles”, Condens. Matter Phys., vol. 28, no. 3, p. 33502, Sep. 2025, doi: 10.5488/cmp.28.33502.

Similar Articles

11-20 of 73

You may also start an advanced similarity search for this article.