First principle study of electronic, magnetic and thermoelectric properties of Co2YPb (Y = Tc, Ti, Zr and Hf) full Heusler: Application to embedded automotive systems
DOI:
https://doi.org/10.5488/cmp.28.43701Keywords:
hermoelectricity, half metallicity, magnetic compounds, embedded systems, mBJ-GGAAbstract
In this study, theoretical investigation on structural, electronic, magnetic, elastic and thermoelectric properties of the full Heusler Co2YPb (Y = Tc, Ti, Zr and Hf) alloys have been performed within density functional theory (DFT). The exchange and correlation potential is addressed using two approximations: the generalized gradient approximation (GGA) and the GGA augmented by the Tran–Blaha-modified Becke–Johnson (mBj-GGA) approximation, which provides a more accurate description of the energy band gap. The electronic and magnetic properties reveal that the full-Heusler alloys Co2YPb (with Y = Tc, Ti, Zr, and Hf) display half-metallic ferromagnetic behavior. Furthermore, the elastic properties suggest that Co2YPb are mechanically stable, with ductile characteristics. p-type full Heusler alloys exhibit positive Seebeck coefficients and high ZT values, indicating good thermoelectric performance in terms of electrical and thermal conductivity. This leads us to the conclusions that these compounds are very interesting in improving the performance of embedded automotive systems and can also be used in spintronic devices.
References
Wollmann L., Nayak A. K., Parkin S. S. P., Felser C., Annu. Rev. Mater. Res., 2017, 47, No. 1, 247–270.
Bradley A. J., Rodgers J. W., Proc. R. Soc. London, Ser. A, 1934, 144, No. 852, 340–359.
Chadov S., Graf T., Chadova K., Dai X., Gasper F., Fecher G. H., Felser C., Phys. Rev. Lett., 2011, 107, No. 4, 047202.
Hara M., Shibata J., Kimura T., Otani Y., Appl. Phys. Lett., 2006, 88, 082501.
Wolf S. A., Awschalom D. D., Buhrman R. A., Daughton J. M., von Molnár S., Roukes M. L., Chtchelkanova A. Y., Tregger D. M., Science, 2001, 294, No. 5546, 1488–1495.
de Groot R. A., Mueller F. M., van Engen P. G., Buschow K. H. J., Phys. Rev. Lett., 1983, 50, No. 25, 2024.
Kawasaki J. K., Chatterjee S., Canfield P. C., MRS Bull., 2022, 47, No. 6, 555–558.
Ouardi S., Fecher G. H., Balke B., Kozina X., Stryganyuk G., Felser C., Lowitzer S., Ködderitzsch D., Ebert H., Ikenaga E., Phys. Rev. B, 2010, 82, No. 8, 085108.
Kübler J.,William A. R., Sommers C. B., Phys. Rev. B, 1983, 28, No. 4, 1745.
Junxiang Y., Kumar P., Cabero-Piris M., Aarts J., Phys. Rev. Mater., 2023, 7, No. 10, 104408.
Kostenko M. G., Lukoyanov M. V., Shreder E. I., JETP Lett., 2018, 107, 126–128.
Ivanshin V. A., Litvinova T. O., Sukhanov A. A., Sokolov D. A., Aronson M. C., JETP Lett., 2009, 90, 116–119.
Marchenkov V. V., Irkhin V. Yu., Marchenkova E. B., Semiannikova A. A., Korenistov P. S., Phys. Lett. A, 2023, 471, 128803.
Graf T., Casper F., Winterlik J., Balke B., Fecher G. H., Felser C., Z. Anorg. Allg. Chem., 2009, 635, No. 6–7, 976–981.
Salaheldeen M., Garcia-Gomez A., Ipatov M., Corte-Leon P., Zhukova V., Blanco J. M., Zhukov A., Chemosensors, 2022, 10, No. 6, 225.
Benatmane S., Cherid S., JETP Lett., 2020, 111, 694–702.
Zitouni A., Remil G., Bouadjemi B., Benstaali W., Lantri T., Matougui M., Houari M., Aziz Z., Bentata S., JETP Lett., 2020, 112, 290–298.
Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1998, 80, No. 4, 891.
Tran F., Blaha P., Phys. Rev. Lett., 2009, 102, No. 22, 226401.
Tran F., Blaha P., Schwarz K., J. Phys.: Condens. Matter, 2007, 19, No. 19, 196208.
Pagare G., Chouhan S. S., Soni P., Sanyal S. P., Rajagopalan M., Comput. Mater. Sci., 2010, 50, 538–544.
Monkhorst H. J., Pack J. D., Phys. Rev. B, 1976, 13, No. 12, 5188.
Houari M., Bouadjemi B., Haid S., Matougui M., Lantri T., Aziz Z., Bentata S., Bouhafs B., Indian J. Phys., 2020, 94, 455.
Mentefa A., Boufadi F. Z., Ameri M., Gaid F. O., Bellagoun L., Odeh A. A., Al-Douri Y., J. Supercond. Novel Magn., 2021, 34, 269–283.
Murnaghan F. D., Proc. Natl. Acad. Sci. U.S.A., 1944, 30, No. 9, 244–247.
Karimian N., Ahmadian F., Solid State Commun., 2015, 223, 60–66.
Idriss S., Labrim H., Ziti S., Bahmad L., Appl. Phys. A, 2020, 126, 190.
Houari M., Mesbah S., Lantri T., Bouadjemi B., Boucherdoud A., Khatar A., Akham A., Haid S., Achour B., Bentata S., Matougui M., J. Mol. Model., 2024, 30, 110.
Galanakis I., Dederichs P. H., Papanikolaou N., Phys. Rev. B, 2002, 66, No. 17, 174429.
Zheng N., Jin Y., J. Magn. Magn. Mater., 2012, 324, No. 19, 3099–3104.
Birsan A., Curr. Appl. Phys., 2014, 14, No. 11, 1434–1436.
Bechmann R., Phys. Rev., 1958, 110, No. 5, 1060.
Bruhns O. T., J. Appl. Math. Mech., 2014, 94, No. 3, 187–202.
Hao Y. J., Zhang L., Chen X. R., Li Y. H., He H. L., J. Phys.: Condens. Matter, 2008, 20, No. 23, 235230.
Benatmane S., Affane M., Bouali Y., Bouadjemi B., Cherid S., Benstaali W., Rev. Mex. Fis., 2023, 69, No. 1, 011003.
Madsen G. K. H., Singh D. J., Comput. Phys. Commun., 2006, 175, No. 1, 67–71.
Boudjeltia M. A., Aziz Z., Terkhi S., Bennani M. A., Khandy S. A., Bouadjemi B., Benidris M., Bentata S., Mod. Phys. Lett. B, 2021, 35, No. 23, 2150400.
Chen S., Ren Z., Mater. Today, 2013, 16, No. 10, 387.
Graf T., Felser C., Parkin S. S. P., Prog. Solid State Chem., 2011, 39, No. 1, 1.
Albaladejo-Siguan M., Baird E. C., Becker-Koch D., Li Y., Rogach A. L., Vaynzof Y., Adv. Energy Mater., 2021, 11, 2003457.
Downloads
Published
License
Copyright (c) 2025 N. Saidi, A. Abbad, W. Benstaali, K. Bahnes

This work is licensed under a Creative Commons Attribution 4.0 International License.







