First principle study of electronic, magnetic and thermoelectric properties of Co2YPb (Y = Tc, Ti, Zr and Hf) full Heusler: Application to embedded automotive systems

Authors

  • N. Saidi Laboratory of Technology and Solids Properties, Faculty of Sciences and Technology, BP227, Abdelhamid Ibn Badis University, 27000 Mostaganem, Algeria https://orcid.org/0009-0004-5343-8572
  • A. Abbad Laboratory of Technology and Solids Properties, Faculty of Sciences and Technology, BP227, Abdelhamid Ibn Badis University, 27000 Mostaganem, Algeria https://orcid.org/0009-0006-1622-5564
  • W. Benstaali Laboratory of Technology and Solids Properties, Faculty of Sciences and Technology, BP227, Abdelhamid Ibn Badis University, 27000 Mostaganem, Algeria https://orcid.org/0000-0003-4634-6210
  • K. Bahnes Laboratory of Technology and Solids Properties, Faculty of Sciences and Technology, BP227, Abdelhamid Ibn Badis University, 27000 Mostaganem, Algeria https://orcid.org/0009-0007-3676-1126

DOI:

https://doi.org/10.5488/cmp.28.43701

Keywords:

hermoelectricity, half metallicity, magnetic compounds, embedded systems, mBJ-GGA

Abstract

In this study, theoretical investigation on structural, electronic, magnetic, elastic and thermoelectric properties of the full Heusler Co2YPb (Y = Tc, Ti, Zr and Hf) alloys have been performed within density functional theory (DFT). The exchange and correlation potential is addressed using two approximations: the generalized gradient approximation (GGA) and the GGA augmented by the Tran–Blaha-modified Becke–Johnson (mBj-GGA) approximation, which provides a more accurate description of the energy band gap. The electronic and magnetic properties reveal that the full-Heusler alloys Co2YPb (with Y = Tc, Ti, Zr, and Hf) display half-metallic ferromagnetic behavior. Furthermore, the elastic properties suggest that Co2YPb are mechanically stable, with ductile characteristics. p-type full Heusler alloys exhibit positive Seebeck coefficients and high ZT values, indicating good thermoelectric performance in terms of electrical and thermal conductivity. This leads us to the conclusions that these compounds are very interesting in improving the performance of embedded automotive systems and can also be used in spintronic devices.

References

Wollmann L., Nayak A. K., Parkin S. S. P., Felser C., Annu. Rev. Mater. Res., 2017, 47, No. 1, 247–270.

Bradley A. J., Rodgers J. W., Proc. R. Soc. London, Ser. A, 1934, 144, No. 852, 340–359.

Chadov S., Graf T., Chadova K., Dai X., Gasper F., Fecher G. H., Felser C., Phys. Rev. Lett., 2011, 107, No. 4, 047202.

Hara M., Shibata J., Kimura T., Otani Y., Appl. Phys. Lett., 2006, 88, 082501.

Wolf S. A., Awschalom D. D., Buhrman R. A., Daughton J. M., von Molnár S., Roukes M. L., Chtchelkanova A. Y., Tregger D. M., Science, 2001, 294, No. 5546, 1488–1495.

de Groot R. A., Mueller F. M., van Engen P. G., Buschow K. H. J., Phys. Rev. Lett., 1983, 50, No. 25, 2024.

Kawasaki J. K., Chatterjee S., Canfield P. C., MRS Bull., 2022, 47, No. 6, 555–558.

Ouardi S., Fecher G. H., Balke B., Kozina X., Stryganyuk G., Felser C., Lowitzer S., Ködderitzsch D., Ebert H., Ikenaga E., Phys. Rev. B, 2010, 82, No. 8, 085108.

Kübler J.,William A. R., Sommers C. B., Phys. Rev. B, 1983, 28, No. 4, 1745.

Junxiang Y., Kumar P., Cabero-Piris M., Aarts J., Phys. Rev. Mater., 2023, 7, No. 10, 104408.

Kostenko M. G., Lukoyanov M. V., Shreder E. I., JETP Lett., 2018, 107, 126–128.

Ivanshin V. A., Litvinova T. O., Sukhanov A. A., Sokolov D. A., Aronson M. C., JETP Lett., 2009, 90, 116–119.

Marchenkov V. V., Irkhin V. Yu., Marchenkova E. B., Semiannikova A. A., Korenistov P. S., Phys. Lett. A, 2023, 471, 128803.

Graf T., Casper F., Winterlik J., Balke B., Fecher G. H., Felser C., Z. Anorg. Allg. Chem., 2009, 635, No. 6–7, 976–981.

Salaheldeen M., Garcia-Gomez A., Ipatov M., Corte-Leon P., Zhukova V., Blanco J. M., Zhukov A., Chemosensors, 2022, 10, No. 6, 225.

Benatmane S., Cherid S., JETP Lett., 2020, 111, 694–702.

Zitouni A., Remil G., Bouadjemi B., Benstaali W., Lantri T., Matougui M., Houari M., Aziz Z., Bentata S., JETP Lett., 2020, 112, 290–298.

Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1998, 80, No. 4, 891.

Tran F., Blaha P., Phys. Rev. Lett., 2009, 102, No. 22, 226401.

Tran F., Blaha P., Schwarz K., J. Phys.: Condens. Matter, 2007, 19, No. 19, 196208.

Pagare G., Chouhan S. S., Soni P., Sanyal S. P., Rajagopalan M., Comput. Mater. Sci., 2010, 50, 538–544.

Monkhorst H. J., Pack J. D., Phys. Rev. B, 1976, 13, No. 12, 5188.

Houari M., Bouadjemi B., Haid S., Matougui M., Lantri T., Aziz Z., Bentata S., Bouhafs B., Indian J. Phys., 2020, 94, 455.

Mentefa A., Boufadi F. Z., Ameri M., Gaid F. O., Bellagoun L., Odeh A. A., Al-Douri Y., J. Supercond. Novel Magn., 2021, 34, 269–283.

Murnaghan F. D., Proc. Natl. Acad. Sci. U.S.A., 1944, 30, No. 9, 244–247.

Karimian N., Ahmadian F., Solid State Commun., 2015, 223, 60–66.

Idriss S., Labrim H., Ziti S., Bahmad L., Appl. Phys. A, 2020, 126, 190.

Houari M., Mesbah S., Lantri T., Bouadjemi B., Boucherdoud A., Khatar A., Akham A., Haid S., Achour B., Bentata S., Matougui M., J. Mol. Model., 2024, 30, 110.

Galanakis I., Dederichs P. H., Papanikolaou N., Phys. Rev. B, 2002, 66, No. 17, 174429.

Zheng N., Jin Y., J. Magn. Magn. Mater., 2012, 324, No. 19, 3099–3104.

Birsan A., Curr. Appl. Phys., 2014, 14, No. 11, 1434–1436.

Bechmann R., Phys. Rev., 1958, 110, No. 5, 1060.

Bruhns O. T., J. Appl. Math. Mech., 2014, 94, No. 3, 187–202.

Hao Y. J., Zhang L., Chen X. R., Li Y. H., He H. L., J. Phys.: Condens. Matter, 2008, 20, No. 23, 235230.

Benatmane S., Affane M., Bouali Y., Bouadjemi B., Cherid S., Benstaali W., Rev. Mex. Fis., 2023, 69, No. 1, 011003.

Madsen G. K. H., Singh D. J., Comput. Phys. Commun., 2006, 175, No. 1, 67–71.

Boudjeltia M. A., Aziz Z., Terkhi S., Bennani M. A., Khandy S. A., Bouadjemi B., Benidris M., Bentata S., Mod. Phys. Lett. B, 2021, 35, No. 23, 2150400.

Chen S., Ren Z., Mater. Today, 2013, 16, No. 10, 387.

Graf T., Felser C., Parkin S. S. P., Prog. Solid State Chem., 2011, 39, No. 1, 1.

Albaladejo-Siguan M., Baird E. C., Becker-Koch D., Li Y., Rogach A. L., Vaynzof Y., Adv. Energy Mater., 2021, 11, 2003457.

Published

2025-12-22

Issue

Section

Articles

Categories

How to Cite

[1]
N. Saidi, A. Abbad, W. Benstaali, and K. Bahnes, “First principle study of electronic, magnetic and thermoelectric properties of Co2YPb (Y = Tc, Ti, Zr and Hf) full Heusler: Application to embedded automotive systems”, Condens. Matter Phys., vol. 28, no. 4, p. 43701, Dec. 2025, doi: 10.5488/cmp.28.43701.

Similar Articles

21-30 of 78

You may also start an advanced similarity search for this article.