Active microrheology of fluids with orientational order

Authors

  • J. S. Lintuvuori Université de Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France https://orcid.org/0000-0003-4108-9550
  • A. Würger Université de Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France

DOI:

https://doi.org/10.5488/cmp.27.13801

Keywords:

liquid crystals, colloids,, microrheology, lattice Boltzmann methods

Abstract

We study the dynamics of a driven spherical colloidal particle moving in a fluid with a broken rotational symmetry. Using a nematic liquid crystal as a model, we demonstrate that when the applied force is not aligned along or perpendicular to the orientational order, the colloidal velocity does not align with the force, but forms an angle with respect to the pulling direction. This leads to blue an anisotropic hydrodynamic drag tensor which depends on the material parameters. In the case of nematic liquid crystal, we give an analytical expression and discuss the resulting implications for active microrheology experiments on fluids with broken rotational symmetry.

References

Squires T. M., Mason T. G., Annu. Rev. Fluid Mech., 2010, 42, 413, https://doi.org/10.1146/annurev-fluid-121108-145608. DOI: https://doi.org/10.1146/annurev-fluid-121108-145608

Manon T. G., Rheol. Acta, 2000, 39, 371, https://doi.org/10.1007/s003970000094. DOI: https://doi.org/10.1007/s003970000094

Landau L. D., Lifshitz E. M., Fluid Mechanics, Pergamon Press, Oxford, 1987.

De Gennes P.-G., Prost J., The Physics of Liquid Crystals, 2nd Ed., Clarendon Press, Oxford, 1993. DOI: https://doi.org/10.1093/oso/9780198520245.001.0001

Larson R. G., The Structure and Rheology of Complex Fluids, Oxford University Press, New York, 1999.

Pujolle-Robic C., Noirez L., Nature, 2001, 409, 167, https://doi.org/10.1038/35051537 . DOI: https://doi.org/10.1038/35051537

Parisi D., Seo J., Schaake R. P., Rhoades A. M., Colby R. H., Prog. Polym. Sci., 2021, 112, 101323, https://doi.org/10.1016/j.progpolymsci.2020.101323. DOI: https://doi.org/10.1016/j.progpolymsci.2020.101323

Doostmohammadi A., Ladoux B., Trends Cell Biol., 2022, 32, 140, https://doi.org/10.1016/j.tcb.2021.09.012. DOI: https://doi.org/10.1016/j.tcb.2021.09.012

Broedersz C. P., MacKintosh F. C., Rev. Mod. Phys., 2014, 86, 995, https://doi.org/10.1103/RevModPhys.86.995. DOI: https://doi.org/10.1103/RevModPhys.86.995

Nishiguchi D., Nagai K. H., Chaté H., Sano M., Phys. Rev. E, 2017, 95, 020601, https://doi.org/10.1103/PhysRevE.95.020601. DOI: https://doi.org/10.1103/PhysRevE.95.020601

Stark H., Phys. Rep., 2001, 351, 387, https://doi.org/10.1016/S0370-1573(00)00144-7. DOI: https://doi.org/10.1016/S0370-1573(00)00144-7

Ruhwandl R. W., Terentjev E. M., Phys. Rev. E, 1996, 54, 5204, https://doi.org/10.1103/PhysRevE.54.5204. DOI: https://doi.org/10.1103/PhysRevE.54.5204

Stark H., Ventzki D., Phys. Rev. E, 2001, 64, 031711, https://doi.org/10.1103/PhysRevE.64.031711. DOI: https://doi.org/10.1103/PhysRevE.64.031711

Loudet J. C., Hanusse P., Poulin P., Science, 2004, 306, 1525, https://doi.org/10.1126/science.1102864. DOI: https://doi.org/10.1126/science.1102864

Gleeson H., Wood T. A., Dickinson M., Phil. Trans. R. Soc. A, 2006, 364, 2789, https://doi.org/10.1098/rsta.2006.1855. DOI: https://doi.org/10.1098/rsta.2006.1855

Lintuvuori J. S., Marenduzzo D., Stratford K., Cates M. E., J. Mater. Chem., 2010, 20, 10547, https://doi.org/10.1039/c0jm01824d. DOI: https://doi.org/10.1039/c0jm01824d

Mondiot F., Loudet J.-C., Mondain-Monval O., Snabre P., Vilquin P. A., Würger A., Phys. Rev. E, 2012, 86, 010401, https://doi.org/10.1103/PhysRevE.86.010401. DOI: https://doi.org/10.1103/PhysRevE.86.010401

Beris A. N., Edwards B. J., Thermodynamics of Flowing Systems, Oxford University Press, Oxford, 1994.

Cates M. E., Henrich O., Marenduzzoa D., Stratfordb K., Soft Matter, 2009, 5, 3791, https://doi.org/10.1039/b908659p. DOI: https://doi.org/10.1039/b908659p

Ladd A. J. C., J. Fluid Mech., 1994, 271, 285, https://doi.org/10.1017/S0022112094001771. DOI: https://doi.org/10.1017/S0022112094001771

Ladd A. J. C., J. Fluid Mech., 1994, 271, 311, https://doi.org/10.1017/S0022112094001783. DOI: https://doi.org/10.1017/S0022112094001783

Nguyen N.-Q., Ladd A. J. C., Phys. Rev. E, 2002, 66, 046708, https://doi.org/10.1103/PhysRevE.66.046708. DOI: https://doi.org/10.1103/PhysRevE.66.046708

Published

2024-03-28

How to Cite

[1]
J. S. Lintuvuori and A. Würger, “Active microrheology of fluids with orientational order”, Condens. Matter Phys., vol. 27, no. 1, p. 13801, Mar. 2024, doi: 10.5488/cmp.27.13801.