Percolation connectivity in deposits obtained usingcompetitive random sequential adsorption of binarydisk mixtures

Authors

DOI:

https://doi.org/10.5488/cmp.27.13201

Keywords:

packing, jamming, adsorption, competition, deposition, percolation

Abstract

Connectedness percolation phenomena in the two-dimensional (2D) packing of binary mixtures of disks with different diameters were studied numerically. The packings were produced using random sequential adsorption (RSA) model with simultaneous deposition of disks. The ratio of the particle diameters was varied within the range D=1-10, and the selection probability of the small disks was varied within the range 0-1. A core-shell structure of the particles was assumed for the analysis of connectivity. The packing coverages in a jamming state for different components, connectivities through small, large and both types of disks, the behavior of electrical conductivity were analyzed. The observed complex effects were explained accounting for the formation of conductive "bridges" from small disks in pores between large disks. 

References

Plawsky J. L., Kim J. K., Schubert E. F., Mater. Today, 2009, 12, No. 6, 36–45, https://doi.org/10.1016/S1369-7021(09)70179-8. DOI: https://doi.org/10.1016/S1369-7021(09)70179-8

Leclerc S., Petryk M., Canet D., Fraissard J., Catal. Today, 2012, 187, No. 1, 104–107, https://doi.org/10.1016/j.cattod.2011.09.007. DOI: https://doi.org/10.1016/j.cattod.2011.09.007

Petryk M., Leclerc S., Canet D., Sergienko I., Deineka V., Fraissard J., J. Phys. Chem. C, 2015, 119, No. 47, 26519–26525, https://doi.org/10.1021/acs.jpcc.5b07974. DOI: https://doi.org/10.1021/acs.jpcc.5b07974

Soonmin H., Ajenifuja E., Res. J. Chem. Environ., 2019, 23, No. 6, 138.

Zighem F., Faurie D., J. Phys.: Condens. Matter, 2021, 33, No. 23, 233002, https://doi.org/10.1088/1361-648X/abe96c. DOI: https://doi.org/10.1088/1361-648X/abe96c

Evans J. W., Rev. Mod. Phys., 1993, 65, 1281–1329, https://doi.org/10.1103/RevModPhys.65.1281. DOI: https://doi.org/10.1103/RevModPhys.65.1281

Meakin P., Skjeltorp A. T., Adv. Phys., 1993, 42, No. 1, 1–127, https://doi.org/10.1080/00018739300101464. DOI: https://doi.org/10.1080/00018739300101464

Talbot J., Tarjus G.,Van Tassel P. R.,Viot P., Colloids Surf., A, 2000, 165,No. 1–3, 287–324, https://doi.org/10.1016/S0927-7757(99)00409-4. DOI: https://doi.org/10.1016/S0927-7757(99)00409-4

Adamczyk Z., Particles at Interfaces: Interactions, Deposition, Structure, Academic Press, 2017.

Adamczyk Z., Morga M., Nattich-Rak M., Sadowska M., Adv. Colloid Interface Sci., 2022, 302, 102630, https://doi.org/10.1016/j.cis.2022.102630. DOI: https://doi.org/10.1016/j.cis.2022.102630

Finegold L., Donnell J. T., Nature, 1979, 278, No. 5703, 443–445, https://doi.org/10.1038/278443a0. DOI: https://doi.org/10.1038/278443a0

Tanemura M., Ann. Inst. Stat. Math., 1979, 31, 351–365, https://doi.org/10.1007/BF02480293. DOI: https://doi.org/10.1007/BF02480293

Feder J., J. Theor. Biol., 1980, 87, No. 2, 237–254, https://doi.org/10.1016/0022-5193(80)90358-6. DOI: https://doi.org/10.1016/0022-5193(80)90358-6

Hinrichsen E. L., Feder J., Jøssang T., J. Stat. Phys., 1986, 44, 793–827, https://doi.org/10.1007/BF01011908. DOI: https://doi.org/10.1007/BF01011908

Hinrichsen E. L., Feder J., Jøssang T., Phys. Rev. A, 1990, 41, 4199–4209, https://doi.org/10.1103/PhysRevA.41.4199. DOI: https://doi.org/10.1103/PhysRevA.41.4199

Wang J. S., Int. J. Mod. Phys. C, 1994, 5, No. 04, 707–715, https://doi.org/10.1142/S0129183194000817. DOI: https://doi.org/10.1142/S0129183194000817

Huang Z., Deng W., Zhang S., Li S., Soft Matter, 2023, 18, 3325–3336, https://doi.org/10.1039/D3SM00166K. DOI: https://doi.org/10.1039/D3SM00166K

Brouwers H. J. H., Soft Matter, 2023, 19, 8465–8471, https://doi.org/10.1039/D3SM01254A. DOI: https://doi.org/10.1039/D3SM01254A

Talbot J., Schaaf P., Phys. Rev. A, 1989, 40, No. 1, 422–427, https://doi.org/10.1103/PhysRevA.40.422. DOI: https://doi.org/10.1103/PhysRevA.40.422

Sherwood J. D., J. Phys. A: Math. Gen., 1990, 23, No. 13, 2827, https://doi.org/10.1088/0305-4470/23/13/021. DOI: https://doi.org/10.1088/0305-4470/23/13/021

Ricci S. M., Talbot J., Tarjus G., Viot P., J. Chem. Phys., 1992, 97, No. 7, 5219–5228, https://doi.org/10.1063/1.463988. DOI: https://doi.org/10.1063/1.463988

Viot P., Tarjus G., Ricci S. M., Talbot J., J. Chem. Phys., 1992, 97, No. 7, 5212–5218, https://doi.org/10.1063/1.463820. DOI: https://doi.org/10.1063/1.463820

Haiduk K., Kubala P., Cieśla M., Phys. Rev. E, 2018, 98, 063309, https://doi.org/10.1103/PhysRevE.98.063309. DOI: https://doi.org/10.1103/PhysRevE.98.063309

Abritta P., Hoy R. S., Phys. Rev. E, 2022, 106, 054604, https://doi.org/10.1103/PhysRevE.106.054604. DOI: https://doi.org/10.1103/PhysRevE.106.054604

Vigil R. D., Ziff R. M., J. Chem. Phys., 1989, 91, No. 4, 2599–2602, https://doi.org/10.1063/1.457021. DOI: https://doi.org/10.1063/1.457021

Vigil R. D., Ziff R. M., J. Chem. Phys., 1990, 93, No. 11, 8270–8272, https://doi.org/10.1063/1.459307. DOI: https://doi.org/10.1063/1.459307

Viot P., Tarjus G., Europhys. Lett., 1990, 13, No. 4, 295, https://doi.org/10.1209/0295-5075/13/4/002. DOI: https://doi.org/10.1209/0295-5075/13/4/002

Lebovka N. I., Tarasevich Y. Y., In: Order, Disorder and Criticality: Advanced Problems of Phase Transition

Theory, Holovatch Y. (Ed.), World Scientific, 2020, 153–200, https://doi.org/10.1142/9789811216220_0004. DOI: https://doi.org/10.1142/9789811216220_0004

Tarjus G., Viot P., Phys. Rev. Lett., 1991, 67, 1875–1878, https://doi.org/10.1103/PhysRevLett.67.1875. DOI: https://doi.org/10.1103/PhysRevLett.67.1875

De Bianchi F., Ponnusami S. A., Silvestroni L., Grande A. M., Mater. Today Commun., 2021, 29, 102754, https://doi.org/10.1016/j.mtcomm.2021.102754. DOI: https://doi.org/10.1016/j.mtcomm.2021.102754

Chao X., Qi L., Ma W., Ge J., Tian W., Mater. Today Commun., 2022, 33, 104275, https://doi.org/10.1016/j.mtcomm.2022.104275. DOI: https://doi.org/10.1016/j.mtcomm.2022.104275

UetsujiY.,Yasuda S., TeramotoY., Compos. Struct., 2022, 301, 116201, https://doi.org/10.1016/j.compstruct.2022.116201. DOI: https://doi.org/10.1016/j.compstruct.2022.116201

Ammi M., Bideau D., Troadec J., J. Phys. D: Appl. Phys., 1987, 20,No. 4, 424, https://doi.org/10.1088/0022-3727/20/4/005. DOI: https://doi.org/10.1088/0022-3727/20/4/005

Zhang G., Torquato S., Phys. Rev. E, 2013, 88, 053312, https://doi.org/10.1103/PhysRevE.88.053312. DOI: https://doi.org/10.1103/PhysRevE.88.053312

Cieśla M., J. Comput. Phys., 2020, 401, 108999, https://doi.org/10.1016/j.jcp.2019.108999. DOI: https://doi.org/10.1016/j.jcp.2019.108999

Cieśla M., Kozubek K., Kubala P., J. Phys. A: Math. Theor., 2022, 55, No. 18, 184003, https://doi.org/10.1088/1751-8121/ac5dff. DOI: https://doi.org/10.1088/1751-8121/ac5dff

Kubala P., Batys P., Barbasz J., Weroński P., Cieśla M., Adv. Colloid Interface Sci., 2022, 306, 102692, https://doi.org/10.1016/j.cis.2022.102692. DOI: https://doi.org/10.1016/j.cis.2022.102692

Morga M., Nattich-Rak M., Adamczyk Z., Mickiewicz D., Gadzinowski M., Basinska T., J. Phys. Chem. C, 2022, 126, No. 43, 18550–18559, https://doi.org/10.1021/acs.jpcc.2c06028. DOI: https://doi.org/10.1021/acs.jpcc.2c06028

Talbot J., Jin X., Wang N. H. L., Langmuir, 1994, 10, No. 6, 1663–1666, https://doi.org/10.1021/la00018a009. DOI: https://doi.org/10.1021/la00018a009

Meakin P., Jullien R., Phys. Rev. A, 1992, 46, No. 4, 2029–2038, https://doi.org/10.1103/PhysRevA.46.2029. DOI: https://doi.org/10.1103/PhysRevA.46.2029

Wagaskar K. V., Late R., Banpurkar A. G., Limaye A. V., Shelke P. B., J. Stat. Phys., 2020, 181, No. 6, 2191–2205, https://doi.org/10.1007/s10955-020-02660-7. DOI: https://doi.org/10.1007/s10955-020-02660-7

Tarjus G., Talbot J., J. Phys. A: Math. Gen., 1991, 24, No. 16, L913, https://doi.org/10.1088/0305-4470/24/16/006. DOI: https://doi.org/10.1088/0305-4470/24/16/006

Marques J. F., Lima A. B., Araújo N. A. M., Cadilhe A., Phys. Rev. E, 2012, 85, No. 6, 061122, https://doi.org/10.1103/PhysRevE.85.061122. DOI: https://doi.org/10.1103/PhysRevE.85.061122

Švrakić N. M., Aleksić B. N., Belić M. R., Physica A, 2016, 441, 93–99, https://doi.org/10.1016/j.physa.2015.07.004. DOI: https://doi.org/10.1016/j.physa.2015.07.004

Adamczyk Z., Siwek B., Weroński P., J. Colloid Interface Sci., 1997, 195, No. 1, 261–263. DOI: https://doi.org/10.1006/jcis.1997.5162

Adamczyk Z., Siwek B., Weroński P., Zembala M., Prog. Colloid Polym. Sci., 1998, 111, 41–47, https://doi.org/10.1007/BFb0118107. DOI: https://doi.org/10.1007/BFb0118107

Adamczyk Z., Weroński P., J. Chem. Phys., 1998, 108, No. 23, 9851–9858, https://doi.org/10.1063/1.476423. DOI: https://doi.org/10.1063/1.476423

Adamczyk Z., Weroński P., Musiał E., J. Colloid Interface Sci., 2001, 241, No. 1, 63–70, https://doi.org/10.1006/jcis.2001.7601. DOI: https://doi.org/10.1006/jcis.2001.7601

Adamczyk Z., Siwek B., Musiał E., Langmuir, 2001, 17, No. 15, 4529–4533, https://doi.org/10.1021/la010208d. DOI: https://doi.org/10.1021/la010208d

Adamczyk Z., Weroński P., Musiał E., J. Chem. Phys., 2002, 116, No. 11, 4665–4672, https://doi.org/10.1063/1.1446425. DOI: https://doi.org/10.1063/1.1446425

Adamczyk Z., Weroński P., Musiał E., J. Colloid Interface Sci., 2002, 248, No. 1, 67–75, https://doi.org/10.1006/jcis.2001.8170. DOI: https://doi.org/10.1006/jcis.2001.8170

Weroński P., Adv. Colloid Interface Sci., 2005, 118, No. 1–3, 1–24, https://doi.org/10.1016/j.cis.2005.03.002. DOI: https://doi.org/10.1016/j.cis.2005.03.002

Weroński P., Colloids Surf., A, 2007, 294, No. 1–3, 254–266, https://doi.org/10.1016/j.colsurfa.2006.08.018. DOI: https://doi.org/10.1016/j.colsurfa.2006.08.018

Weroński P., Colloids Surf., A, 2007, 294, No. 1–3, 267–279, https://doi.org/10.1016/j.colsurfa.2006.08.020. DOI: https://doi.org/10.1016/j.colsurfa.2006.08.020

Araújo N. A. M., Cadilhe A., Privman V., Phys. Rev. E, 2008, 77, No. 3, 031603, https://doi.org/10.1103/PhysRevE.77.031603. DOI: https://doi.org/10.1103/PhysRevE.77.031603

Sadowska M., Cieśla M., Adamczyk Z., Colloids Surf., A, 2021, 617, 126296, https://doi.org/10.1016/j.colsurfa.2021.126296. DOI: https://doi.org/10.1016/j.colsurfa.2021.126296

Cieśla M., Barbasz J., J. Chem. Phys., 2012, 137, No. 4, 044706, https://doi.org/10.1063/1.4738472. DOI: https://doi.org/10.1063/1.4738472

Tartaglione V., Sabatier J., Farges C., Fractal Fract., 2021, 5, No. 3, 65, https://doi.org/10.3390/fractalfract5030065. DOI: https://doi.org/10.3390/fractalfract5030065

Adamczyk Z., Jaszczółt K., Michna A., Siwek B., Szyk-Warszyńska L., Zembala M., Adv. Colloid Interface Sci., 2005, 118, No. 1–3, 25–42, https://doi.org/10.1016/j.cis.2005.03.003. DOI: https://doi.org/10.1016/j.cis.2005.03.003

Adamczyk Z., Curr. Opin. Colloid Interface Sci., 2012, 17, No. 3, 173–186, https://doi.org/10.1016/j.cocis.2011.12.002. DOI: https://doi.org/10.1016/j.cocis.2011.12.002

Barker G. C., Grimson M. J., J. Phys.: Condens. Matter, 1989, 1, No. 17, 2779, https://doi.org/10.1088/0953-8984/1/17/001. DOI: https://doi.org/10.1088/0953-8984/1/17/001

Odagaki T., Hoshiko A., J. Phys. Soc. Jpn., 2002, 71, No. 9, 2350–2351, https://doi.org/10.1143/JPSJ.71.2350. DOI: https://doi.org/10.1143/JPSJ.71.2350

Okubo T., Odagaki T., J. Phys.: Condens. Matter, 2004, 16, No. 37, 6651, https://doi.org/10.1088/0953-8984/16/37/002. DOI: https://doi.org/10.1088/0953-8984/16/37/002

Lebovka N., Petryk M., Vorobiev E., Phys. Rev. E, 2022, 106, 064610, https://doi.org/10.1103/PhysRevE.106.064610. DOI: https://doi.org/10.1103/PhysRevE.106.064610

Sahimi M., Applications of Percolation Theory, Vol. 213, Springer Nature, 2023. DOI: https://doi.org/10.1007/978-3-031-20386-2

Quintanilla J. A., Ziff R. M., Phys. Rev. E, 2007, 76, 051115, https://doi.org/10.1103/PhysRevE.76.051115. DOI: https://doi.org/10.1103/PhysRevE.76.051115

Balram A. C., Dhar D., Pramana, 2010, 74, 109–114, https://doi.org/10.1007/s12043-010-0012-0. DOI: https://doi.org/10.1007/s12043-010-0012-0

Mertens S., Moore C., Phys. Rev. E, 2012, 86, 061109, https://doi.org/10.1103/PhysRevE.86.061109. DOI: https://doi.org/10.1103/PhysRevE.86.061109

Speidel L., Harrington H. A., Chapman S. J., Porter M. A., Phys. Rev. E, 2018, 98, No. 1, 012318, https://doi.org/10.1103/PhysRevE.98.012318. DOI: https://doi.org/10.1103/PhysRevE.98.012318

Quintanilla J., Torquato S., Ziff R. M., J. Phys. A: Math. Gen., 2000, 33, No. 42, L399, https://doi.org/10.1088/0305-4470/33/42/104. DOI: https://doi.org/10.1088/0305-4470/33/42/104

Zuyev S., Quintanilla J., J. Math. Phys., 2003, 44, No. 12, 6040–6046, https://doi.org/10.1063/1.1624489. DOI: https://doi.org/10.1063/1.1624489

Meester R., Roy R., Sarkar A., J. Stat. Phys., 1994, 75, 123–134, https://doi.org/10.1007/BF02186282. DOI: https://doi.org/10.1007/BF02186282

Meester R., Roy R., Continuum Percolation, Cambridge University Press, Cambridge, UK, 1996. DOI: https://doi.org/10.1017/CBO9780511895357

Phani M. K., Dhar D., J. Phys. A: Math. Gen., 1984, 17, No. 12, L645, https://doi.org/10.1088/0305-4470/17/12/004. DOI: https://doi.org/10.1088/0305-4470/17/12/004

Quintanilla J., Phys. Rev. E, 2001, 63, 061108, https://doi.org/10.1103/PhysRevE.63.061108. DOI: https://doi.org/10.1103/PhysRevE.63.061108

Quintanilla J., Mech. Mater., 2006, 38, No. 8–10, 849–858, https://doi.org/10.1016/j.mechmat.2005.06.019. DOI: https://doi.org/10.1016/j.mechmat.2005.06.019

Janssens S. D., Vázquez-Cortés D., Fried E., Acta Mater., 2022, 225, 117555, https://doi.org/10.1016/j.actamat.2021.117555. DOI: https://doi.org/10.1016/j.actamat.2021.117555

He D., Ekere N. N., Cai L., Phys. Rev. E, 2002, 65, 061304, https://doi.org/10.1103/PhysRevE.65.061304. DOI: https://doi.org/10.1103/PhysRevE.65.061304

Drwenski T., Van Roij R., Van Der Schoot P., J. Chem. Phys., 2018, 149, No. 5, 054902, https://doi.org/10.1063/1.5040185. DOI: https://doi.org/10.1063/1.5040185

Lebovka N. I., Tatochenko M. O., Vygornitskii N. V., Tarasevich Y. Y., Phys. Rev. E, 2021, 104, 054104, https://doi.org/10.1103/PhysRevE.104.054104. DOI: https://doi.org/10.1103/PhysRevE.104.064104

Lebovka N. I., Tatochenko M. O., Vygornitskii N. V., Eserkepov A. V., Akhunzhanov R. K., Tarasevich Y. Y., Phys. Rev. E, 2021, 103, 042113, https://doi.org/10.1103/PhysRevE.103.042113. DOI: https://doi.org/10.1103/PhysRevE.103.042113

Hoshen J., Kopelman R., Phys. Rev. B, 1976, 14, 3438–3445, https://doi.org/10.1103/PhysRevB.14.3438. DOI: https://doi.org/10.1103/PhysRevB.14.3438

van der Marck S. C., Phys. Rev. E, 1997, 55, 1514–1517, https://doi.org/10.1103/PhysRevE.55.1514. DOI: https://doi.org/10.1103/PhysRevE.55.1514

Frank D. J., Lobb C. J., Phys. Rev. B, 1988, 37, 302–307, https://doi.org/10.1103/PhysRevB.37.302. DOI: https://doi.org/10.1103/PhysRevB.37.302

Lebovka N. I., Vygornitskii N. V., Tarasevich Y. Y., Phys. Rev. E, 2020, 102, 022133, https://doi.org/10.1103/PhysRevE.102.022133. DOI: https://doi.org/10.1103/PhysRevE.102.022133

Lebovka N., Petryk M., Tatochenko M. O., Vygornitskii N. V., Phys. Rev. E, 2023, 108, No. 2, 024109, https://doi.org/10.1103/PhysRevE.108.024109. DOI: https://doi.org/10.1103/PhysRevE.108.024109

Kennedy T., Discrete Comput. Geom., 2006, 35, 255–267, https://doi.org/10.1007/s00454-005-1172-4. DOI: https://doi.org/10.1007/s00454-005-1172-4

Lebovka N., Lisunova M., Mamunya Y. P., Vygornitskii N., J. Phys. D: Appl. Phys., 2006, 39, No. 10, 2264, https://doi.org/10.1088/0022-3727/39/10/040. DOI: https://doi.org/10.1088/0022-3727/39/10/040

Published

2024-03-28

How to Cite

[1]
N. I. Lebovka, M. R. Petryk, and N. V. Vygornitskii, “Percolation connectivity in deposits obtained usingcompetitive random sequential adsorption of binarydisk mixtures”, Condens. Matter Phys., vol. 27, no. 1, p. 13201, Mar. 2024, doi: 10.5488/cmp.27.13201.

Similar Articles

11-18 of 18

You may also start an advanced similarity search for this article.