Dimerizing hard spherocylinders in porous media
DOI:
https://doi.org/10.5488/cmp.27.13607Keywords:
patchy colloids, spherocylinders, dimerization, disordered porous media, geometrical porosity, probe particle porosityAbstract
This research focuses on the unique phase behavior of non-spherical patchy colloids in porous environments. Based on the theory of scaled particle (SPT), methods have been refined and applied to analyze the thermodynamic properties of non-spherical patchy particles in a disordered porous medium. Utilizing the associative theory of liquids in conjunction with SPT, we investigated the impact of associative interactions and connections between the functional nodes of particles on the formation of the nematic phase. Calculations of orientational and spatial distributions were conducted, which helped to understand the phase behavior of particles during the transition from isotropic to nematic phase under the spatial constraints imposed by the disordered matrix of the porous medium.
References
Ilnytskyi J., Sokołowski S., Pizio O., Phys. Rev. E, 1999, 59, 4161, https://doi.org/10.1103/PhysRevE.59.4161. DOI: https://doi.org/10.1103/PhysRevE.59.4161
Earl D. J., Ilnytskyi J., Wilson M. R., Mol. Phys., 2001, 99, 1719, https://doi.org/10.1080/00268970110069551. DOI: https://doi.org/10.1080/00268970110069551
Ilnytskyi J., Wilson M. R., J. Mol. Liq., 2001, 92, 21, https://doi.org/10.1016/S0167-7322(01)00174-X. DOI: https://doi.org/10.1016/S0167-7322(01)00174-X
Ilnytskyi J., Trokhymchuk A., Schoen M., J. Chem. Phys., 2014, 141, 114903, https://doi.org/10.1063/1.4894438. DOI: https://doi.org/10.1063/1.4894438
Ilnytskyi J., Patsahan T., Holovko M., Krouskop P. E., Makowski M. P., Macromolecules, 2008, 41, 9904, https://doi.org/10.1021/ma801045z. DOI: https://doi.org/10.1021/ma801045z
Bianchi E., Blaak R., Likos C. N., Phys. Chem. Chem. Phys., 2011, 13, 6397, https://doi.org/10.1039/C0CP02296A. DOI: https://doi.org/10.1039/c0cp02296a
Kalyuzhnyi Yu. V., Bianchi E., Ferrari S., Kahl G., J. Chem. Phys., 2015, 142, 114108, https://doi.org/10.1063/1.4914345. DOI: https://doi.org/10.1063/1.4914345
Kalyuzhnyi Yu. V., Holovko M., Patsahan T., Cummings P. T., J. Phys. Chem. Lett., 2014, 5, 4260, https://doi.org/10.1021/jz502135f. DOI: https://doi.org/10.1021/jz502135f
Holovko M. F., Korvatska M. Ya., Condens. Matter Phys., 2021, 24, 33605, https://doi.org/10.5488/CMP.24.33605. DOI: https://doi.org/10.5488/CMP.24.33605
Kuntz D., Walker L., Soft Matter, 2008, 4, 286, https://doi.org/10.1039/B714859C. DOI: https://doi.org/10.1039/B714859C
Lee C. F., Phys. Rev. E, 2009, 80, 031902, https://doi.org/10.1103/PhysRevE.80.031902. DOI: https://doi.org/10.1103/PhysRevE.80.031902
Saurabh S., Lansac Y., Jang Y. H., Glaser M. A., Clark N. A., Maiti P. R., Phys. Rev. E, 2017, 95, 032702, https://doi.org/10.1103/PhysRevE.95.032702. DOI: https://doi.org/10.1103/PhysRevE.95.032702
Liu K., Zhao N., Kumacheva E., Chem. Soc. Rev., 2011, 40, 656, https://doi.org/10.1039/C0CS00133C. DOI: https://doi.org/10.1039/c0cs00133c
Cladis P. E., Mol. Cryst. Liq. Cryst., 1988, 165, 85, https://doi.org/10.1080/00268948808082197. DOI: https://doi.org/10.1080/00268948808082197
Sear R., Jackson G., Mol. Phys., 1994, 82, 473, https://doi.org/10.1080/00268979400100354. DOI: https://doi.org/10.1080/00268979400100354
Onsager L., Ann. N. Y. Acad. Sci., 1949, 51, 627, https://doi.org/10.1111/j.1749-6632.1949.tb27296.x. DOI: https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
Wertheim M. S., J. Stat. Phys., 1984, 35, 19, https://doi.org/10.1007/BF01017362. DOI: https://doi.org/10.1007/BF01017362
Wertheim M. S., J. Stat. Phys., 1984, 35, 35, https://doi.org/10.1007/BF01017363. DOI: https://doi.org/10.1007/BF01017363
Vroege G. J., Lekkerkerker H. N. W., Rep. Prog. Phys., 1992, 55, 1241, https://doi.org/10.1088/0034-4885/55/8/003. DOI: https://doi.org/10.1088/0034-4885/55/8/003
McGrother S., Sear R., Jackson G., J. Chem. Phys., 1997, 106, 7315, https://doi.org/10.1063/1.473693. DOI: https://doi.org/10.1063/1.473693
Parsons J., Phys. Rev. A, 1979, 19, 1225, https://doi.org/10.1103/PhysRevA.19.1225. DOI: https://doi.org/10.1103/PhysRevA.19.1225
Lee S., J. Chem. Phys., 1987, 87, 4972, https://doi.org/10.1063/1.452811. DOI: https://doi.org/10.1063/1.452811
Madden W. G., Glandt E. D., J. Stat. Phys., 1988, 51, 537, https://doi.org/10.1007/BF01028471. DOI: https://doi.org/10.1007/BF01028471
Reiss H., Frisch H. L., Lebowitz J. L., J. Chem. Phys., 1959, 31, 369, https://doi.org/10.1063/1.1730361. DOI: https://doi.org/10.1063/1.1730361
Holovko M., Dong W., J. Phys. Chem. B, 2009, 113, 6360, https://doi.org/10.1021/jp809706n. DOI: https://doi.org/10.1021/jp809706n
Chen W., Dong W., Holovko M., Chen X. S., J. Phys. Chem. B, 2010, 114, 1225, https://doi.org/10.1021/jp9106603. DOI: https://doi.org/10.1021/jp9106603
Holovko M. F., Shmotolokha V. I., Dong W., Condens. Matter Phys., 2010, 13, 23607,
https://doi.org/10.5488/CMP.13.23607. DOI: https://doi.org/10.5488/CMP.13.23607
Patsahan T., Holovko M., Dong W., J. Chem. Phys., 2011, 134, 074503, https://doi.org/10.1063/1.3532546. DOI: https://doi.org/10.1063/1.3532546
Holovko M., Patsahan T., Dong W., Condens. Matter Phys., 2012, 15, 23607, https://doi.org/10.5488/CMP.15.23607. DOI: https://doi.org/10.5488/CMP.15.23607
Holovko M., Patsahan T., Dong W., Pure Appl. Chem., 2013, 85, 115, https://doi.org/10.1351/PAC-CON-12-05-06. DOI: https://doi.org/10.1351/PAC-CON-12-05-06
Chen W., Zhao S. L., Holovko M. F., Chen X. S., Dong W., J. Phys. Chem. B, 2016, 120, 5491, https://doi.org/10.1021/acs.jpcb.6b02957. DOI: https://doi.org/10.1021/acs.jpcb.6b02957
Holovko M. F., Patsahan T., Dong W., Condens. Matter Phys., 2017, 20, 33602, https://doi.org/10.5488/CMP.20.33602. DOI: https://doi.org/10.5488/CMP.20.33602
Holovko M. F., Korvatska M. Ya., Condens. Matter Phys., 2020, 23, 23605, https://doi.org/10.5488/CMP.23.23605. DOI: https://doi.org/10.5488/CMP.23.23605
Thiele E., J. Chem. Phys., 1963, 39, 474, https://doi.org/10.1063/1.1734272. DOI: https://doi.org/10.1063/1.1734272
Wertheim M. S., Phys. Rev. Lett., 1963, 10, 321, https://doi.org/10.1103/PhysRevLett.10.321. DOI: https://doi.org/10.1103/PhysRevLett.10.321
Carnahan N. F., Starling K. E., J. Chem. Phys., 1969, 51, 635, https://doi.org/10.1063/1.1672048. DOI: https://doi.org/10.1063/1.1672048
Yukhnovski I. R., Holovko M. F., Statistical Theory of Classical Equilibrium Systems, Naukova Dumka, Kyiv, 1980, (in Russian).
Cotter M. A., Phys. Rev. A, 1974, 10, 625, https://doi.org/10.1103/PhysRevA.10.625. DOI: https://doi.org/10.1103/PhysRevA.10.625
Cotter M. A., Wacker D. C., Phys. Rev. A, 1978, 18, 2669, https://doi.org/10.1103/PhysRevA.18.2669. DOI: https://doi.org/10.1103/PhysRevA.18.2669
Holovko M. F., Hvozd M. V., Condens. Matter Phys., 2017, 20, 43501, https://doi.org/10.5488/CMP.20.43501. DOI: https://doi.org/10.5488/CMP.20.43501
Lago S., Cuetos A., Martínez-Haya B., Rull L. F., J. Mol. Recognit., 2004, 17, 417, https://doi.org/10.1002/jmr.704. DOI: https://doi.org/10.1002/jmr.704
Holovko M., Shmotolokha V., Patsahan T., J. Mol. Liq., 2014, 189, 30, https://doi.org/10.1016/j.molliq.2013.05.030. DOI: https://doi.org/10.1016/j.molliq.2013.05.030
Holovko M., Shmotolokha V., Condens. Matter Phys., 2018, 21, 13602, https://doi.org/10.5488/CMP.21.13602. DOI: https://doi.org/10.5488/CMP.21.13602
Holovko M., ShmotolokhaV., Patsahan T., In: Physics of Liquid Matter: Modern Problems, Springer Proceedings in Physics, Vol. 171, Bulavin L., Lebovka N. (Eds.), Springer, Heidelberg, 2015, 3–30.
Hvozd M., Patsahan T., Holovko M., J. Phys. Chem. B, 2018, 122, 5534, https://doi.org/10.1021/acs.jpcb.7b11834. DOI: https://doi.org/10.1021/acs.jpcb.7b11834
Holovko M. F., Shmotolokha V. I., Ukr. J. Phys., 2015, 60, 770, https://doi.org/10.15407/ujpe60.08.0770. DOI: https://doi.org/10.15407/ujpe60.08.0770
Holovko M., Shmotolokha V., Condens. Matter Phys., 2020, 23, 13601, https://doi.org/10.5488/CMP.23.13601. DOI: https://doi.org/10.5488/CMP.23.13601
Shmotolokha V. I., Holovko M. F., Condens. Matter Phys., 2022, 25, 33602, https://doi.org/10.5488/CMP.25.33602. DOI: https://doi.org/10.5488/CMP.25.33602
Hvozd M., Patsahan T., Patsahan O., Holovko M., J. Mol. Liq., 2019, 285, 244, https://doi.org/10.1016/j.molliq.2019.03.171. DOI: https://doi.org/10.1016/j.molliq.2019.03.171
Hvozd M., Patsahan O., Patsahan T., Holovko M., J. Mol. Liq., 2022, 346, 117888, https://doi.org/10.1016/j.molliq.2021.117888. DOI: https://doi.org/10.1016/j.molliq.2021.117888
Wertheim M. S., J. Stat. Phys., 1986, 42, 459, https://doi.org/10.1007/BF01127721. DOI: https://doi.org/10.1007/BF01127721
Wertheim M. S., J. Stat. Phys., 1986, 42, 477, https://doi.org/10.1007/BF01127722. DOI: https://doi.org/10.1007/BF01127722
Holovko M. F., J. Mol. Liq., 2002, 96–97, 65, https://doi.org/10.1016/S0167-7322(01)00327-0. DOI: https://doi.org/10.1016/S0167-7322(01)00327-0
Holovko M., Condens. Matter Phys., 1999, 2, 205, https://doi.org/10.5488/CMP.2.2.205. DOI: https://doi.org/10.5488/CMP.2.2.205
Chapman W. G., Jackson G., Gubbins K. E., Mol. Phys., 1988, 65, 1057–1079, https://doi.org/10.1080/00268978800101601. DOI: https://doi.org/10.1080/00268978800101601
Herzfeld J., Berger A. E., Wingate J. W., Macromolecules, 1984, 17, 1718, https://doi.org/10.1021/ma00139a014. DOI: https://doi.org/10.1021/ma00139a014
Bolhuis P., Frenkel D., J. Chem. Phys., 1997, 106, 666, https://doi.org/10.1063/1.473404. DOI: https://doi.org/10.1063/1.473404
Wertheim M. S., J. Chem. Phys., 1987, 87, 7323, https://doi.org/10.1063/1.453326. DOI: https://doi.org/10.1063/1.453326
De Michele C., Bellini T., Sciortino F., Macromolecules, 2012, 45, 1090, https://doi.org/10.1021/ma201962x. DOI: https://doi.org/10.1021/ma201962x
De Michele C., Liq. Cryst., 2019, 46, 2003, https://doi.org/10.1080/02678292.2019.1645366. DOI: https://doi.org/10.1080/02678292.2019.1645366
Egorov S. A., Milchev A., Binder K., Polymers, 2016, 8, 296, https://doi.org/10.3390/polym8080296. DOI: https://doi.org/10.3390/polym8080296
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 V. I. Shmotolokha, M. F. Holovko
This work is licensed under a Creative Commons Attribution 4.0 International License.