Plasmonic effects in rod-like metal-dielectric nanoparticles

Authors

  • Ya. V. Karandas National University Zaporizhzhia Polytechnic, 64, Zhukovskogo Str., Zaporizhzhia 69063, Ukraine; Zaporizhzhia Scientific Research Forensic Center of the MIA of Ukraine, 19-A Avaliani St., Zaporizhzhia 69068, Ukraine https://orcid.org/0009-0008-7639-1091

DOI:

https://doi.org/10.5488/cmp.27.23701

Keywords:

polarizability, equivalent prolate spheroid, frequency dependencies, absorption and scattering cross-sections, rod-like nanoparticles

Abstract

The optical properties of rod-like two-layer nanoparticles are studied using the notions of equivalent prolate spheroid. The calculations are presented for frequency dependencies for polarizability and the absorption and scattering cross-section of prolate spheroids, cylinders, and spherocylinders. The effect of the sizes, the shapes of the nanoparticle and the material of the core and the shell on the location of the maxima of the imaginary part of polarizability and absorption and scattering cross-sections is analysed. The recommendations regarding the shape and size ratio of the nanoparticles for obtaining the maximum value of radiation efficiency are formulated.

References

Bohren C. F., Huffman D. R., Absorption and Scattering of Light by Small Particles, Wiley-VCH, New York, 1998. DOI: https://doi.org/10.1002/9783527618156

Kelly K. L., Coronado E., Zhao L. L., Schatz G. C., J. Phys. Chem. B, 2003, 107, No. 3, 668–677. DOI: https://doi.org/10.1021/jp026731y

Dmitruk N. L., Goncharenko A. V., Venger E. F., Optics of small particles and composite media, Naukova Dumka, Kyiv, 2009.

Klimov V. V., Nanoplasmonics, CRC Press, Boka Raton, 2013. DOI: https://doi.org/10.1201/b15442

Amendola V., Pilot R., Frasconi M., Marago O. M., Iati M. A., J. Phys.: Condens. Matter, 2017, 29, 03002 (48 pages). DOI: https://doi.org/10.1088/1361-648X/aa60f3

Moradi A., Canonical Problems in the Theory of Plasmonics: From 3D to 2D Systems, Springer Series in Optical Sciences, Vol. 230, Springer International Publishing, Cham, 2020. DOI: https://doi.org/10.1007/978-3-030-43836-4_11

Dmitruk N. L., Malinich S. Z., Ukr. J. Phys. Rev., 2014, 9, No. 1, 3–37 (in Ukrainian).

Sekar R., Basavegowd N., Thathapudi J. J., Sekhar M. R., Parinita J., Somu P., Baek K.-H., Pharmaceutics, 2023, 15, No. 2, 433 (27 pages). DOI: https://doi.org/10.3390/pharmaceutics15020433

Huang X., Neretina S., El-Sayed M. A., Adv. Mater., 2009, 21, No. 48, 4880–4910. DOI: https://doi.org/10.1002/adma.200802789

Sharifi M., Attar F., Saboury A. A., Akhtari K., Hooshmand N., Hasan A., El-Sayed M. A., J. Controlled Release, 2019, 311-312, 170–189. DOI: https://doi.org/10.1016/j.jconrel.2019.08.032

Elahi N., Kamali M., Talanta, 2018, 184, 537–556. DOI: https://doi.org/10.1016/j.talanta.2018.02.088

Yang X., Yang M., Pang B., Vara M., Xia Y., Chem. Rev., 2015, 115, No. 19, 10410–10488. DOI: https://doi.org/10.1021/acs.chemrev.5b00193

Chen Y.-S., Zhao Y., Yoon S. J., Gambhir S. S., Nat. Nanotechnol., 2019, 14, No. 5, 465–472. DOI: https://doi.org/10.1038/s41565-019-0392-3

Alkilany A. M., Thompson L. B., Boulos S. P., Sisco P. N., Murphy C. J., Adv. Drug Delivery Rev., 2012, 64, No. 2, 190–199. DOI: https://doi.org/10.1016/j.addr.2011.03.005

Haine A. T., Niidome T., Chem. Pharm. Bull., 2017, 65, No. 7, 625–628. DOI: https://doi.org/10.1248/cpb.c17-00102

Murphy C. J., Thompson L. B., Alkilany A. M., Sisco P. N., Boulos S. P., Sivapalan S. T., Yang J. A., Chernak D. J., Huang D. J., J. Phys. Chem. Lett., 2010, 1, No. 19, 2867–2875. DOI: https://doi.org/10.1021/jz100992x

Arellano L. G., Villar-Alvarez E. M., Velasco B., Dominguez-Arca V., Prieto G., Cambon A., Barbosa S., Taboada P., J. Mol. Liq., 2023, 377, 121511 (15 pages). DOI: https://doi.org/10.1016/j.molliq.2023.121511

Chen H., Shao L., Li Q., Wang J., Chem. Soc. Rev., 2013, 42, 2679–2724. DOI: https://doi.org/10.1039/C2CS35367A

Kreibig U., Vollmer M., Optical Properties of Metal Clusters, No. 25 In Springer Series in Materials Science, Springer, Berlin, Heidelberg, 2010.

Kawabata A., Kubo R., J. Phys. Soc. Jpn., 1966, 21, 1765–1772. DOI: https://doi.org/10.1143/JPSJ.21.1765

Wokaun A., Godon J. P., Liao P. F., Phys. Rev. Lett., 1982, 48, 957–960. DOI: https://doi.org/10.1103/PhysRevLett.48.957

Klar T., Perner M., Grosse S., Von Plessen G., Spirkl W., Feldmann J., Phys. Rev. Lett., 1998, 80, 4249–4252. DOI: https://doi.org/10.1103/PhysRevLett.80.4249

Billaud P., Huntzinger J.-R., Cottancin E., Lerme J., Pellarin M., Arnaud L., Broyer M., Del Fatti N., Vallee F., Eur. Phys. J. D, 2007, 43, 271–274. DOI: https://doi.org/10.1140/epjd/e2007-00112-y

Tomchuk P. M., Tomchuk B. P., J. Exp. Theor. Phys., 1997, 85, No. 2, 360–369,. DOI: https://doi.org/10.1134/1.558284

Tomchuk P. M., Grigorchuk N. I., Phys. Rev. B, 2006, 73, No. 15, 155423 (17 pages). DOI: https://doi.org/10.1103/PhysRevB.73.155423

Grigorchuk N. I., Tomchuk P. M., Phys. Rev. B, 2011, 84, No. 8, 085448 (14 pages). DOI: https://doi.org/10.1103/PhysRevB.84.085448

Grigorchuk N. I., J. Phys. Stud., 2016, 20, No. 1-2, 1701 (9 pages). DOI: https://doi.org/10.30970/jps.20.1701

Grigorchuk N. I., Condens. Matter Phys., 2022, 25, No. 1, 13703 (11 pages). DOI: https://doi.org/10.5488/CMP.25.13703

Prescott S. W., Mulvaney P., J. Appl. Phys., 2006, 99, 123504 (7 pages). DOI: https://doi.org/10.1063/1.2203212

Constantin D., Eur. Phys. J. E, 2015, 38, 116 (6 pages). DOI: https://doi.org/10.1140/epje/i2015-15116-2

Korotun A.V., KarandasYa.V.,RevaV. I., Ukr. J. Phys., 2022, 67,No. 12, 849–858. DOI: https://doi.org/10.15407/ujpe67.12.849

Korotun A. V., Koval’ A. A., Reva V. I., J. Appl. Spectrosc., 2021, 86, No. 4, 606–612. DOI: https://doi.org/10.1007/s10812-019-00866-6

Smirnova N. A., Malysh R. O., Korotun A. V., Reva V. I., Titov I. M., J. Nano- Electron. Phys., 2021, 13, No. 5, 05010. DOI: https://doi.org/10.21272/jnep.13(5).05010

Korotun A. V., Karandas Ya V., Reva V. I., Titov I. M., Ukr. J. Phys., 2021, 66, No. 10, 908–918. DOI: https://doi.org/10.15407/ujpe66.10.908

Baida H., Billaud P., Marhaba S., Christofilos D., Cottancin E., Crut A., Lerme J., Maioli P., Pellarin M., Broyer M., Del Fatti N., Vallee F., Sanchez-Iglesias A., Pastoriza-Santos I., Liz-Marzan L. M., Nano Lett., 2009, 9, 3463–3469. DOI: https://doi.org/10.1021/nl901672b

Baida H., Christofilos D., Maioli P., Crut A., Del Fatti N., Vallee F., Eur. Phys. J. D, 2011, 63, 293–299. DOI: https://doi.org/10.1140/epjd/e2010-10594-y

Korotun A. V., Karandas Ya. V., Phys. Met. Metallogr., 2022, 123, No. 1, 7–15. DOI: https://doi.org/10.1134/S0031918X22010070

Korotun A. V., Pavlyshche N. I., Phys. Met. Metallogr., 2021, 122, No. 10, 941–949. DOI: https://doi.org/10.1134/S0031918X21100057

Sun S., Rasskazov I. L., Carney P. S., Zhang P. S., Moroz A., J. Phys. Chem. C, 2020, 124, No. 24, 13365–13373. DOI: https://doi.org/10.1021/acs.jpcc.0c03415

Published

2024-06-28

Issue

Section

Articles

Categories

How to Cite

[1]
Y. V. Karandas, “Plasmonic effects in rod-like metal-dielectric nanoparticles”, Condens. Matter Phys., vol. 27, no. 2, p. 23701, Jun. 2024, doi: 10.5488/cmp.27.23701.

Similar Articles

21-26 of 26

You may also start an advanced similarity search for this article.